Epithelial COX-2 Expression Is Not Regulated By Nitric Oxide in Rodent Renal Cortex

Author:

Theilig Franziska1,Câmpean Valentina1,Paliege Alexander1,Breyer Matthew1,Briggs Josie P.1,Schnermann Jürgen1,Bachmann Sebastian1

Affiliation:

1. From the Anatomisches Institut, Charité, Humboldt Universität (F.T., V.C., A.P., S.B.), Berlin, Germany; Department of Nephrology (M.B.), Nashville, Tenn; and National Institutes of Health (J.P.B., J.S.), Bethesda, Md.

Abstract

In the adult rodent kidney cortex, cyclooxygenase-2 (COX-2), NO synthase (NOS1), and renin synthesis change in parallel on alterations in distal tubular NaCl concentration, and their products in part may mutually determine synthesis and activity of these enzymes. Epithelial NO synthesis has been postulated to exert a stimulatory role on COX-2 expression. Changes in COX-2 and NOS1 may be assessed histochemically by determining changes in the number of positive cells. In rat, macula densa and adjacent cells may co-express COX-2 and NOS1, whereas cell groups of the upstream thick ascending limb (cTAL) express COX-2 alone. We have tested whether the stimulation of COX-2 expression by short- and long-term unilateral renal artery stenosis, low salt, and furosemide treatment depends on co-expression of NOS1. These conditions produced significant respective increases (40% to 351%, P <0.05) in the number of COX-2 immunoreactive cells, regardless of whether NOS1 was present or not, suggesting that co-expression of NOS1 is not necessary to produce these changes. Under high-salt conditions, analogous though inverse changes were recorded (−62% to −73%, P <0.05). In mice with genetic deletion of NOS1, low- and high-salt diets caused similar changes of COX-2 immunoreactivity (106% and −52%, P <0.05) than those seen in wild-type mice (43% and −78%, P <0.05). We conclude that alterations of distal tubular NaCl concentration and presumably NaCl transport induce changes in epithelial COX-2 expression that does not depend on presence of co-expressed NOS1. It therefore seems unlikely that NO is part of a signal transduction chain between tubular chloride sensing and the modulating effects of prostaglandins in tubulo-vascular information transfer.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3