Bradykinin Regulates Cyclooxygenase-2 in Rat Renal Thick Ascending Limb Cells

Author:

Rodriguez Jorge A.1,Vio Carlos P.1,Pedraza Paulina L.1,McGiff John C.1,Ferreri Nicholas R.1

Affiliation:

1. From the Department of Physiology (J.A.R., C.P.V.), Pontificia Universidad Catolica de Chile, Santiago, Chile; and the Department of Pharmacology (P.L.P., J.C.M., N.R.F.), New York Medical College, Valhalla.

Abstract

Cyclooxygenase-2 (COX-2) is constitutively expressed in a subset of thick ascending limb cells in the cortex and medulla and increases when the renin-angiotensin and kallikrein-kinin systems are activated. Although the contribution of angiotensin II to the regulation of COX-2 is known, the effects of bradykinin on COX-2 expression have not been determined in this nephron segment. We evaluated expression of B2 bradykinin receptors in thick ascending limb cells containing COX-2 and the effect of bradykinin on COX-2 expression in primary cultured medullary thick ascending cells. The presence of B2 receptors was studied in renal sections by immunohistochemistry with antibodies against B2, COX-2, and Tamm-Horsfall glycoprotein. B2 receptors were detected on the apical and basolateral portion of the thick ascending cells. These cells also contained COX-2, suggesting that COX-2 expression may be regulated via B2 receptor. Incubation of cultured medullary thick ascending cells with bradykinin (10 −7 to 10 −5 mol/L) induced a significant increase on COX-2 protein expression. Maximal expression of COX-2 was observed 4 hours after exposure to bradykinin (10 −7 mol/L), effect abolished by a B2 receptor antagonist (HOE-140; 10 −6 mol/L). Prostaglandin E 2 production increased when these cells were challenged with bradykinin for 4 hours, indicating that COX-2 was enzymatically active. We have demonstrated (1) the presence of B2 receptors in thick ascending limb cells expressing COX-2 and (2) the stimulatory effect of bradykinin on COX-2 protein expression, via B2 receptors, in cultured medullary thick ascending cells. We suggest that bradykinin can affect ion transport in the thick ascending limb via a COX-2–mediated mechanism.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3