Angiotensin II Administration to Atherosclerotic Mice Increases Macrophage Uptake of Oxidized LDL

Author:

Keidar Shlomo1,Heinrich Ronit1,Kaplan Marielle1,Hayek Tony1,Aviram Michael1

Affiliation:

1. From the Lipid Research Laboratory, Technion Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences and Rambam Medical Center, Haifa, Israel.

Abstract

The goal of the present study was to elucidate mechanisms for angiotensin II (Ang II) induction of oxidized low density lipoprotein (Ox-LDL) uptake by macrophages, the hallmark of early atherosclerosis. Compared with placebo treatment, Ang II injections (0.1 mL, 10 −7 mol/L per day) for 2 weeks to apolipoprotein E-deficient mice significantly increased Ox-LDL degradation, CD36 mRNA expression, and CD36 protein expression by their peritoneal macrophages (MPMs). These effects were abolished by treatment with losartan (5 to 50 mg/kg per day) before Ang II administration. Because no such effect was obtained in vitro, the ex vivo effect of Ang II on macrophage uptake of Ox-LDL could be mediated by a factor that is not expressed at a significant level in vitro. Because Ang II stimulates cellular production of interleukin-6 (IL-6), we analyzed the possible role of IL-6 as a mediator of Ang II-mediated cellular uptake of Ox-LDL by using several approaches. First, incubations of IL-6 with MPM or IL-6 administration in mice increased macrophage Ox-LDL degradation and CD36 mRNA expression. Second, injection of IL-6 receptor antibodies in mice during Ang II treatment reduced macrophage Ox-LDL uptake and CD36 expression compared treatment with Ang II alone. Finally, Ang II treatment of IL-6-deficient mice did not affect their MPM Ox-LDL uptake and CD36 protein levels. Thus, we conclude that a novel mechanism for Ang II atherogenicity, related to macrophage cholesterol accumulation and foam cell formation, may involve its stimulatory effect on macrophage uptake of Ox-LDL, a process mediated byIL-6.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3