Frequency Function of Transit Times through Dog Pulmonary Circulation

Author:

MASERI ATTILIO1,CALDINI PAOLO1,PERMUTT SOLBERT1,ZIERLER KENNETH L.1

Affiliation:

1. Clayton Laboratories for Study of Control of Cell Function in Health and Disease, Department of Medicine, and Departments of Physiology and of Environmental Medicine, The Johns Hopkins University, Baltimore, Maryland 21205

Abstract

The frequency function of transit times through the pulmonary vascular system in dogs was obtained by deconvolution of a pair of simultaneous tracer dilution curves. One tracer dilution curve represented transit times from pulmonary artery to aorta; the other represented transit times from left atrium to aorta. Theory of and requirements for deconvolution are presented. Two preparations were used: closed chest with recirculation, open chest with only myocardial recirculation. The frequency function of pulmonary vascular transit times was skewed markedly to the right. At constant cardiac output and left atrial pressure it was unaffected by change in heart rate or by respiratory movements. Frequency functions of transit time obtained by deconvolution of observed tracer concentration curves, including recirculation, were compared with those obtained by monoexponential extrapolation of the same tracer concentration curves to "eliminate" recirculation. If recirculation seemed to appear before the observed concentration curve (aortic sampling following pulmonary arterial injection) fell to 20% of peak, monoexponential extrapolation led to a 10% overestimate of mean transit time and to greater errors in estimate of higher moments. If recirculation did not seem to occur until the concentration fell to 10% or less of peak, there was no difference between the frequency functions of transit times calculated by the two methods. Increased coefficients of variance and skewness were associated with large mean transit times produced by hypovolemia and reduced cardiac output secondary to withdrawal of blood.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Reference17 articles.

Cited by 86 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3