Physiologic mechanisms in aortic insufficiency. I. The effect of changing heart rate on flow dynamics. II. Determinants of Austin Flint murmur.

Author:

Laniado S,Yellin E L,Yoran C,Strom J,Hori M,Gabbay S,Terdiman R,Frater R W

Abstract

We studied the dynamic changes in mitral flow patterns and in mitral valve motion before and after producing acute, reversible aortic insufficiency (AI) in nine open-chest dogs. Phasic mitral flow, the mitral valve echocardiogram, and intracardiac phonocardiogram and other hemodynamic variables were measured. During moderate AI (mean regurgitant fraction 52 +/- 5%) (+/- SD), the antegrade filling volume decreased from 31 +/- 7 to 24 +/- 6 ml (p less than 0.01), but the peak protodiastolic mitral flow rate increased from 139 +/- 37 to 157 +/- 42 ml/sec (p less than 0.01), reflecting the shift of a larger fraction of total mitral filling volume to early diastole. In six dogs, atrial pacing was used to examine the hemodynamic effects of tachycardia. Increasing the heart rate from 90 to 120 beats/min increased cardiac output from 2.64 +/- 0.56 to 3.3 +/- 0.831/min (p less than 0.05) and decreased left atrial pressure from 24 +/- 8 to 17 +/- 7 mm Hg (p less than 0.05). Increasing heart rate to 150 beats/min compromised mitral filling, reduced cardiac output and increased left atrial pressure. Moderate tachycardia improves cardiac performance in AI by reducing regurgitant volume, without significantly reducing transmitral filling volume. The mitral valve echocardiogram showed only a small decrease in cusp opening amplitude during AI. A low-pitched left ventricular inflow tract murmur was recorded in protodiastole and corresponded in time to the rapidly increasing mitral flow. We conclude that the major determinant of the turbulence responsible for the creation of the austin flint murmur is the antegrade mitral flow stream and its mixing with the retrograde aortic flow.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3