Determinants of In‐Hospital Mortality After Percutaneous Coronary Intervention: A Machine Learning Approach

Author:

Al'Aref Subhi J.1,Singh Gurpreet1,van Rosendael Alexander R.1,Kolli Kranthi K.1,Ma Xiaoyue1,Maliakal Gabriel1,Pandey Mohit1,Lee Bejamin C.1,Wang Jing1,Xu Zhuoran1,Zhang Yiye2,Min James K.1,Wong S. Chiu3,Minutello Robert M.3

Affiliation:

1. Dalio Institute of Cardiovascular Imaging New York‐Presbyterian Hospital New York NY

2. Division of Health Informatics Weill Cornell Graduate School of Medical Sciences New York NY

3. Division of Cardiology Department of Medicine Weill Cornell Medicine New York NY

Abstract

Background The ability to accurately predict the occurrence of in‐hospital death after percutaneous coronary intervention is important for clinical decision‐making. We sought to utilize the New York Percutaneous Coronary Intervention Reporting System in order to elucidate the determinants of in‐hospital mortality in patients undergoing percutaneous coronary intervention across New York State. Methods and Results We examined 479 804 patients undergoing percutaneous coronary intervention between 2004 and 2012, utilizing traditional and advanced machine learning algorithms to determine the most significant predictors of in‐hospital mortality. The entire data were randomly split into a training (80%) and a testing set (20%). Tuned hyperparameters were used to generate a trained model while the performance of the model was independently evaluated on the testing set after plotting a receiver‐operator characteristic curve and using the output measure of the area under the curve ( AUC ) and the associated 95% CIs. Mean age was 65.2±11.9 years and 68.5% were women. There were 2549 in‐hospital deaths within the patient population. A boosted ensemble algorithm (AdaBoost) had optimal discrimination with AUC of 0.927 (95% CI 0.923–0.929) compared with AUC of 0.913 for XGB oost (95% CI 0.906–0.919, P =0.02), AUC of 0.892 for Random Forest (95% CI 0.889–0.896, P <0.01), and AUC of 0.908 for logistic regression (95% CI 0.907–0.910, P <0.01). The 2 most significant predictors were age and ejection fraction. Conclusions A big data approach that utilizes advanced machine learning algorithms identifies new associations among risk factors and provides high accuracy for the prediction of in‐hospital mortality in patients undergoing percutaneous coronary intervention.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3