Hemodynamics and microcirculatory alterations in reduced renal mass hypertension.

Author:

Lombard J H1,Hinojosa-Laborde C1,Cowley A W1

Affiliation:

1. Department of Physiology, Medical College of Wisconsin, Milwaukee, TE 53226.

Abstract

The objectives of this study were to determine the hemodynamic and microcirculatory changes that occur during reduced renal mass hypertension in rats. In conscious animals with 75% reduction of total renal mass, mean arterial pressure was initially (4-8 hours) elevated by 15-20 mm Hg during intravenous infusion with isonatremic (145.4 mM) NaCl. Cardiac index was elevated by 15-20%, and total peripheral resistance index was normal or reduced. Cardiac index subsequently returned toward normal, but mean arterial pressure remained elevated (20-40 mm Hg), presumably because of an elevated total peripheral resistance. Cremasteric arterioles were actively constricted (35-50%) in rats with short-term (36 hours), but not chronic (5-6 weeks) reduced renal mass hypertension. Total microvessel density was approximately 15% lower in maximally dilated cremaster muscles of chronically hypertensive rats versus sham-operated controls, which suggests that arterioles are lost during sustained reduced renal mass hypertension. Arteriolar constriction in response to increased superfusate PO2 (0% to 5% O2) was 2-4 times greater in rats with both short-term and chronic reduced renal mass hypertension than in normotensive controls, which suggests that oxygen-dependent autoregulatory mechanisms are altered. The hemodynamic and microcirculatory alterations observed in these experiments suggest that classic short-term autoregulatory mechanisms and an enhanced response of arterioles to increased oxygen availability contribute to the elevated total peripheral resistance in short-term reduced renal mass hypertension, whereas structural changes and altered vascular oxygen responses contribute to an elevated microvascular resistance in chronic reduced renal mass hypertension.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3