Affiliation:
1. Department of Medicine, Veterans Administration Medical Center, Minneapolis, MN 55417.
Abstract
In addition to preserving the permselectivity of the vascular wall and providing an antithrombogenic surface, the vascular endothelium contributes importantly to the regulation of vasomotor tone. Indeed, the endothelium participates in the conversion of angiotensin I to angiotensin II; the enzymatic inactivation of several plasma constituents such as bradykinin, norepinephrine, serotonin, and ADP; and the synthesis and release of vasodilator substances such as prostacyclin and the recently discovered endothelium-derived relaxing factor (EDRF). The diffusible EDRF released from the endothelium is nitric oxide or a substance closely related to it such as nitrosothiol. The endothelium also synthesizes and releases vasoconstrictive factors, including products derived from arachidonic acid metabolism and the recently discovered peptide endothelin. An increasing body of evidence from experimental and clinical studies indicates that EDRF and endothelium-derived contracting factors play an important role in vascular physiology and pathology. It has become apparent that the balance of these factors may be a major determinant of systemic and regional hemodynamics. Moreover, through generally opposite effects on growth-related vascular changes, contracting factors such as endothelin and relaxing factors such as EDRF also may be important determinants of the vascular response to injury in various disease states such as atherosclerosis and hypertension. It is clear that the vascular endothelium is a complex and dynamic organ. Understanding endothelium function in normal physiology and disease states is of potential clinical importance and should be the focus of future investigation.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献