Endothelin stimulated by angiotensin II augments contractility of spontaneously hypertensive rat resistance arteries.

Author:

Dohi Y1,Hahn A W1,Boulanger C M1,Bühler F R1,Lüscher T F1

Affiliation:

1. Department of Research, University Hospital, Basel, Switzerland.

Abstract

In cultured endothelial cells, endothelin is produced after stimulation with angiotensin II. The effects of angiotensin II and endothelin-1 on vascular sensitivity to norepinephrine were studied in perfused rat mesenteric resistance arteries. Expression of endothelin messenger RNA (mRNA) was determined in endothelial cells obtained from the mesenteric circulation. Perfusion (5 hours) of the arteries with angiotensin II (10(-7) M) potentiated contractions in arteries with endothelium induced by norepinephrine in spontaneously hypertensive rats but not Wistar-Kyoto rats. The potentiation was inhibited by phosphoramidon and an endothelin antibody. Short-term stimulation (1 hour) with angiotensin II did not cause the potentiation. Stimulation with angiotensin I (10(-7) M; 5 hours) caused a potentiation prevented by captopril. In endothelial cells collected from the mesenteric arterial bed of spontaneously hypertensive rats, endothelin-specific mRNA was constitutively expressed, and the level of endothelin transcripts was increased by angiotensin II (10(-7) M). Threshold concentrations of exogenous endothelin-1 potentiated contractions induced by norepinephrine in arteries with and without endothelium of spontaneously hypertensive rats but not Wistar-Kyoto rats. Thus, angiotensin II stimulates the endothelial production of endothelin in situ and therapy potentiates contractions to norepinephrine in mesenteric resistance arteries of spontaneously hypertensive rats. This suggests that vascular endothelin production acts as an amplifier of the pressor effects of the renin-angiotensin system that may play an important role in hypertension.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3