Arteriolar diameter and tissue oxygen tension during muscle contraction in hypertensive rats.

Author:

Boegehold M A1,Bohlen H G1

Affiliation:

1. Department of Physiology and Biophysics, Indiana University School of Medicine, Indianapolis 46223.

Abstract

This study evaluated the possibility that in hypertension, mechanisms that maintain near normal arteriolar diameters at elevated arteriolar pressures limit the ability of skeletal muscle arterioles to dilate in response to an increase in tissue metabolism. The spinotrapezius muscles of 16- to 20-week-old spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats (WKY) were contracted at frequencies of 1, 2, 4, and 8 Hz. The inner diameters of first-order through third-order arterioles were measured at rest and following 3 minutes of contractions. Tissue oxygen tension (PO2) at the venous end of capillaries was monitored during 8-Hz contractions. At rest, following contractions, and after maximum dilation with adenosine, the inner diameters of arterioles of equivalent branch order were not significantly different in SHR and WKY. Opening of closed arterioles during muscle contraction and adenosine application occurred in less than 5% of the observations in both groups. The resting tissue PO2 was 25.5 +/- 1.3 mm Hg in normal rats and 26.1 +/- 2.1 mm Hg in SHR. At nearly maximum vasodilation during 8-Hz stimulation, tissue PO2 recovered to 81.9 +/- 12.7% of control in WKY but only to 41.2 +/- 13.0% of control in SHR. These observations indicate that the expression of local regulatory mechanisms related to tissue metabolism is virtually normal in the spinotrapezius muscle vasculature of SHR in the context of arteriolar dilation. However, at near maximum performance, factors other than absolute arteriolar diameter preclude the normal preservation of tissue PO2 in the spinotrapezius muscle of SHR.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Reference34 articles.

1. Interrelations between contracting striated muscle and precapillary microvessels;Gorczynski RJ;Am J Physiol,1978

2. Exercise hyperemia in the absence of a tissue PO: decrease;Proctor KG;Blood Vessels,1981

3. Perivascular and tissue P02 in contracting rat spinotrapezius muscle;Lash JM;Am J Physiol,1987

4. Background of Increased Flow Resistance and Vascular Reactivity in Spontaneously Hypertensive Rats

5. Arteriolar closure mediated by hyperresponsiveness to norepinephrine in hypertensive rats;Bohlen HG;Am J Physiol,1979

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3