Employing Extracellular Volume Cardiovascular Magnetic Resonance Measures of Myocardial Fibrosis to Foster Novel Therapeutics

Author:

Schelbert Erik B.1,Sabbah Hani N.1,Butler Javed1,Gheorghiade Mihai1

Affiliation:

1. From the Department of Medicine, University of Pittsburgh School of Medicine, PA (E.B.S.); UPMC Cardiovascular Magnetic Resonance Center, Heart and Vascular Institute, Pittsburgh, PA (E.B.S.); Clinical and Translational Science Institute, University of Pittsburgh, PA (E.B.S.); Division of Cardiovascular Medicine, Department of Medicine, Henry Ford Health System, Detroit, MI (H.N.S.); Cardiology Division, Department of Medicine, Stony Brook University, NY (J.B.); and Center for Cardiovascular...

Abstract

Quantifying myocardial fibrosis (MF) with myocardial extracellular volume measures acquired during cardiovascular magnetic resonance promises to transform clinical care by advancing pathophysiologic understanding and fostering novel therapeutics. Extracellular volume quantifies MF by measuring the extracellular compartment depicted by the myocardial uptake of contrast relative to plasma. MF is a key domain of dysfunctional but viable myocardium among others (eg, microvascular dysfunction and cardiomyocyte/mitochondrial dysfunction). Although anatomically distinct, these domains may functionally interact. MF represents pathological remodeling in the heart associated with cardiac dysfunction and adverse outcomes likely mediated by interactions with the microvasculature and the cardiomyocyte. Reversal of MF improves key measures of cardiac dysfunction, so reversal of MF represents a likely mechanism for improved outcomes. Instead of characterizing the myocardium as homogenous tissue and using important yet still generic descriptors, such as thickness (hypertrophy) and function (diastolic or systolic), which lack mechanistic specificity, paradigms of cardiac disease have evolved to conceptualize myocardial disease and patient vulnerability based on the extent of disease involving its various compartments. Specifying myocardial compartmental involvement may then implicate cellular/molecular disease pathways for treatment and targeted pharmaceutical development and above all highlight the role of the cardiac-specific pathology in heart failure among myriad other changes in the heart and beyond. The cardiology community now requires phase 2 and 3 clinical trials to examine strategies for the regression/prevention of MF and eventually biomarkers to identify MF without reliance on cardiovascular magnetic resonance. It seems likely that efficacious antifibrotic therapy will improve outcomes, but definitive data are needed.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3