Deep Learning to Predict Cardiac Magnetic Resonance–Derived Left Ventricular Mass and Hypertrophy From 12-Lead ECGs

Author:

Khurshid Shaan12ORCID,Friedman Samuel3,Pirruccello James P.12ORCID,Di Achille Paolo3ORCID,Diamant Nathaniel3,Anderson Christopher D.452ORCID,Ellinor Patrick T.62ORCID,Batra Puneet3ORCID,Ho Jennifer E.12ORCID,Philippakis Anthony A.3,Lubitz Steven A.2ORCID

Affiliation:

1. Division of Cardiology (S.K., J.P.P., J.E.H.), Massachusetts General Hospital, Boston.

2. Cardiovascular Disease Initiative (S.K., J.P.P., C.D.A., P.T.E., J.E.H., S.A.L.), Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge.

3. Data Sciences Platform (S.F., P.D.A., N.D., P.B., A.A.P.), Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge.

4. Center for Genomic Medicine (C.D.A.), Massachusetts General Hospital, Boston.

5. Henry and Allison McCance Center for Brain Health (C.D.A.), Massachusetts General Hospital, Boston.

6. Cardiac Arrhythmia Service (P.T.E.), Massachusetts General Hospital, Boston.

Abstract

Background: Classical methods for detecting left ventricular (LV) hypertrophy (LVH) using 12-lead ECGs are insensitive. Deep learning models using ECG to infer cardiac magnetic resonance (CMR)-derived LV mass may improve LVH detection. Methods: Within 32 239 individuals of the UK Biobank prospective cohort who underwent CMR and 12-lead ECG, we trained a convolutional neural network to predict CMR-derived LV mass using 12-lead ECGs (left ventricular mass-artificial intelligence [LVM-AI]). In independent test sets (UK Biobank [n=4903] and Mass General Brigham [MGB, n=1371]), we assessed correlation between LVM-AI predicted and CMR-derived LV mass and compared LVH discrimination using LVM-AI versus traditional ECG-based rules (ie, Sokolow-Lyon, Cornell, lead aVL rule, or any ECG rule). In the UK Biobank and an ambulatory MGB cohort (MGB outcomes, n=28 612), we assessed associations between LVM-AI predicted LVH and incident cardiovascular outcomes using age- and sex-adjusted Cox regression. Results: LVM-AI predicted LV mass correlated with CMR-derived LV mass in both test sets, although correlation was greater in the UK Biobank (r=0.79) versus MGB (r=0.60, P<0.001 for both). When compared with any ECG rule, LVM-AI demonstrated similar LVH discrimination in the UK Biobank (LVM-AI c-statistic 0.653 [95% CI, 0.608 -0.698] versus any ECG rule c-statistic 0.618 [95% CI, 0.574 -0.663], P=0.11) and superior discrimination in MGB (0.621; 95% CI, 0.592 -0.649 versus 0.588; 95% CI, 0.564 -0.611, P=0.02). LVM-AI-predicted LVH was associated with incident atrial fibrillation, myocardial infarction, heart failure, and ventricular arrhythmias. Conclusions: Deep learning-inferred LV mass estimates from 12-lead ECGs correlate with CMR-derived LV mass, associate with incident cardiovascular disease, and may improve LVH discrimination compared to traditional ECG rules.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3