Coronary Plaque Structural Stress Is Associated With Plaque Composition and Subtype and Higher in Acute Coronary Syndrome

Author:

Teng Zhongzhao1,Brown Adam J.1,Calvert Patrick A.1,Parker Richard A.1,Obaid Daniel R.1,Huang Yuan1,Hoole Stephen P.1,West Nick E.J.1,Gillard Jonathan H.1,Bennett Martin R.1

Affiliation:

1. From the Department of Radiology (Z.T., Y.H., J.H.G.), Department of Engineering (Z.T.), Division of Cardiovascular Medicine (A.J.B., P.A.C., D.R.O., M.R.B.), and Centre for Applied Medical Statistics, University of Cambridge, Cambridge, UK (R.A.P.); and Department of Interventional Cardiology, Papworth Hospital NHS Trust, Cambridge, UK (S.P.H., N.E.J.W.).

Abstract

Background— Atherosclerotic plaques underlying most myocardial infarctions have thin fibrous caps and large necrotic cores; however, these features alone do not reliably identify plaques that rupture. Rupture occurs when plaque structural stress (PSS) exceeds mechanical strength. We examined whether PSS could be calculated in vivo based on virtual histology (VH) intravascular ultrasound and whether PSS varied according to plaque composition, subtype, or clinical presentation. Methods and Results— A total of 4429 VH intravascular ultrasound frames from 53 patients were analyzed, identifying 99 584 individual plaque components. PSS was calculated by finite element analysis in whole vessels, in individual plaques, and in higher-risk regions (plaque burden ≥70%, mean luminal area ≤4 mm 2 , noncalcified VH-defined thin-cap fibroatheroma). Plaque components including total area/arc of calcification ( R 2 =0.33; P <0.001 and R 2 =0.28; P <0.001) and necrotic core ( R 2 =0.18; P <0.001 and R 2 =0.15; P <0.001) showed complex, nonlinear relationships with PSS. PSS was higher in noncalcified VH-defined thin-cap fibroatheroma compared with thick-cap fibroatheromas (median [Q1–Q3], 8.44 [6.97–10.64] versus 7.63 [6.37–9.68]; P =0.002). PSS was also higher in patients with an acute coronary syndrome, where mean luminal area ≤4 mm 2 (8.24 [7.06–9.93] versus 7.72 [6.33–9.34]; P =0.03), plaque burden ≥70% (9.18 [7.44–10.88] versus 7.93 [6.16–9.46]; P =0.02), and in noncalcified VH-defined thin-cap fibroatheroma (9.23 [7.33–11.44] versus 7.65 [6.45–8.62]; P =0.02). Finally, PSS increased the positive predictive value for VH intravascular ultrasound to identify clinical presentation. Conclusions— Finite element analysis modeling demonstrates that structural stress is highly variable within plaques, with increased PSS associated with plaque composition, subtype, and higher-risk regions in patients with acute coronary syndrome. PSS may represent a novel tool to analyze the dynamic behavior of coronary plaques with the potential to improve prediction of plaque rupture.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3