Contrast-Enhanced Ultrasound Assessment of Impaired Adipose Tissue and Muscle Perfusion in Insulin-Resistant Mice

Author:

Belcik J. Todd1,Davidson Brian P.1,Foster Ted1,Qi Yue1,Zhao Yan1,Peters Dawn1,Lindner Jonathan R.1

Affiliation:

1. From the Knight Cardiovascular Institute (J.T.B., B.P.D., T.F., Y.Q., Y.Z., J.R.L.) and Department of Public Health and Preventative Medicine (D.P.), Oregon Health & Science University, Portland.

Abstract

Background— In diabetes mellitus, reduced perfusion and capillary surface area in skeletal muscle, which is a major glucose storage site, contribute to abnormal glucose homeostasis. Using contrast-enhanced ultrasound, we investigated whether abdominal adipose tissue perfusion is abnormal in insulin resistance and correlates with glycemic control. Methods and Results— Contrast-enhanced ultrasound perfusion imaging of abdominal adipose tissue and skeletal muscle was performed in obese insulin resistance (db/db) mice at 11 to 12 or 14 to 16 weeks of age and in control lean mice. Time–intensity data were analyzed to quantify microvascular blood flow (MBF) and capillary blood volume (CBV). Blood glucose response for 1 hour was measured after insulin challenge (1 U/kg, IP). Compared with control mice, db/db mice at 11 to 12 and 14 to 16 weeks had a higher glucose concentration area under the curve after insulin (11.8±2.8, 20.6±4.3, and 28.4±5.9 mg·min/dL [×1000], respectively; P =0.0002) and also had lower adipose MBF (0.094±0.038, 0.035±0.010, and 0.023±0.01 mL/min per gram; P =0.0002) and CBV (1.6±0.6, 1.0±0.3, and 0.5±0.1 mL/100 g; P =0.0017). The glucose area under the curve correlated in a nonlinear fashion with both adipose and skeletal muscle MBF and CBV. There were significant linear correlations between adipose and muscle MBF ( r =0.81) and CBV ( r =0.66). Adipocyte cell volume on histology was 25-fold higher in 14- to 16-week db/db versus control mice. Conclusions— Abnormal adipose MBF and CBV in insulin resistance can be detected by contrast-enhanced ultrasound and correlates with the degree of impairment in glucose storage. Abnormalities in adipose tissue and muscle seem to be coupled. Impaired adipose tissue perfusion is in part explained by an increase in adipocyte size without proportional vascular response.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Radiology Nuclear Medicine and imaging

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3