The control of sugar uptake by metabolic demand in isolated adult rat heart cells.

Author:

Haworth R A,Berkoff H A

Abstract

To investigate the control of sugar uptake by metabolic demand, we used isolated quiescent adult rat heart cells in suspension, under conditions similar to those found during anoxia. Metabolic demand was varied by exposing cells to rotenone plus various levels of p-trifluoromethoxyphenylhydrazone. Without glucose, the time taken for half of the cells to undergo contracture was inversely proportional to the metabolic demand as measured by the rate of lactate production. For any metabolic demand, the onset of contracture was preceded by a sudden drop in adenosine triphosphate. The permeability of contracted cells to glucose was investigated using 3-O-methylglucose. The rate of 3-O-methylglucose uptake by such cells was strongly dependent on the time taken for half the cells to undergo contracture, with low rates at low times to half contracture, and insulin-like rates at high times to half contracture. This suggests that the full induction of glucose transport by metabolic demand can be prematurely curtailed by the loss of adenosine triphosphate. This phenomenon appeared to limit glucose utilization in cells with a high metabolic demand when glucose was present: such cells underwent contracture unless insulin was also present, the rate of glucose uptake as measured with 2-deoxyglucose was inhibited, and the rate of lactate production was inhibited. Isoproterenol depressed glucose transport by two mechanisms. First, by stimulating the basal metabolic demand of the cell it reduced the time taken for half the cells to undergo contracture and, hence, the level of induced sugar transport. Second, it significantly delayed the onset of sugar permeability with respect to the contracture event.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3