Binding of charged ferritin to alveolar wall components and charge selectivity of macromolecular transport in permeability pulmonary edema in rats.

Author:

Brody J S,Vaccaro C A,Hill N S,Rounds S

Abstract

Rat lungs were inflated and incubated in either anionic or cationic ferritin, and alveolar and capillary basement membranes were examined by electron microscopy. Cationic ferritin bound to heparan sulfate proteoglycans on the external surface of the alveolar basement membrane, whereas cationic ferritin bound to the lamina densa of the capillary basement membranes. Anionic and cationic ferritin was also perfused through the pulmonary circulation of lungs isolated from control rats and rats previously injected with alpha-naphthylthiourea, which produces permeability pulmonary edema. Neither anionic nor cationic ferritin leaked from the pulmonary capillaries in perfused controls; cationic, but not anionic, ferritin adhered to endothelial cell surfaces. In lungs with alpha-naphthylthiourea pulmonary edema, perfused for 2-15 minutes, anionic ferritin leaked from pulmonary capillaries into the alveolar interstitium and alveolar space, while cationic ferritin remained within the capillary lumen. Five times as much anionic ferritin appeared in the capillary basement membranes on the thick side of the alveolar wall, as in the alveolar basement membranes on the thin side of the alveolar wall. In alpha-naphthylthiourea lungs perfused for 45-60 minutes, cationic ferritin also leaked through the injured endothelium and bound twice as much to the alveolar as the capillary basement membranes. The negatively charged pulmonary capillary endothelium, the positively charged capillary basement membranes, and the negatively charged alveolar basement membranes may influence the transport of macromolecules from the pulmonary circulation in permeability pulmonary edema.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3