The effect of coronary inflow pressure on coronary vascular resistance in the isolated dog heart.

Author:

Hanley F L,Messina L M,Grattan M T,Hoffman I E

Abstract

The shape of the coronary arterial pressure-flow relationship results from the interaction of a number of poorly understood physiological factors. Experiments in which coronary inflow and outflow pressures were coupled so that driving pressure was held constant showed that changes in inflow or outflow pressures altered coronary blood flow: coronary vascular resistance varied inversely with changes inflow pressure below 50 mm Hg and with changes in outflow pressure below 80 mm Hg. The magnitude of the influence of inflow pressure on resistance also depended on the fixed level of outflow pressure, the influence being large when the outflow pressure was low, and small when it was high. Inflow and outflow pressures, then, are two physiological factors which are determinants of the shape of the pressure-flow relationship, and their interaction contributes to the degree of curvature found in a particular relationship. These findings suggest that the use of linear regression in the interpretation of pressure-flow relationships results in poor estimation of resistance and zero-flow pressure. Other experiments measuring regional coronary blood flow using radionuclide-labeled microspheres resulted in the same inverse relationship between inflow pressure and resistance, regardless of mural depth, indicating that inflow pressure may influence resistance by distending vessels, rather than by causing sequential cessation of perfusion in successive transmural layers.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Reference18 articles.

1. Increased number of myocardial blood flow measurements with radionuclide-labelled microspheres. Am;Baer RW;Physiol,1984

2. Effect of coronary sinus occlusion on coronary pressure-flow relations;Bellamy RF;Am J Physiol,1980

3. Mechanical properties of arteries

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3