Reentrant ventricular arrhythmias in the late myocardial infarction period in the dog. 13. Correlation of activation and refractory maps.

Author:

Gough W B,Mehra R,Restivo M,Zeiler R H,el-Sherif N

Abstract

Isochronal maps of ventricular activation were analyzed in dogs 3-5 days after ligation of the left anterior descending coronary artery utilizing a 64-channel multiplexer. Isochronal maps of the effective refractory period were determined from 62 epicardial sites and correlated with the activation maps. The ischemia occurring in the surviving epicardial layer prolonged refractoriness in a spatially nonuniform manner. The resulting pattern of refractoriness on the epicardial surface resembled concentric rings of isorefractoriness which increased in duration from the normal zone to the center of the ischemic zone. The formation of an arc of functional unidirectional conduction block occurred along the gradient of refractoriness and the exact location of the arc depended on the S1-S2 interval. When a short S1-S2 failed to induce reentry, fewer adjacent sites with sufficiently disparate refractoriness formed a smaller arc of block. A subsequent S3 encountered further nonuniformly shortened refractoriness (normal areas had shortened refractoriness greater than ischemic areas) and the arc of block was lengthened. This required a longer time for the wavefront to circulate around the arc. When it then reached the distal side of the arc, refractoriness had expired proximal to the arc and reentry occurred. Similarly, nonuniform shortening of refractoriness explained why one reentrant beat may or may not produce successive reentrant beats. Therefore, the spatial pattern of refractoriness forms the substrate for the arc of unidirectional conduction block that is fundamental to the development of ventricular reentry in this experimental model.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 199 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3