Overperfusion, hypoxia, and increased pressure cause only hydrostatic pulmonary edema in anesthetized sheep.

Author:

Landolt C C,Matthay M A,Albertine K H,Roos P J,Wiener-Kronish J P,Staub N C

Abstract

Overperfusion (high pressure and flow through a restricted microvascular bed) has been suggested as the mechanism for both microembolic and high altitude pulmonary edema. In eighteen anesthetized, ventilated sheep, we measured pulmonary hemodynamics, lung lymph flow, and lymph:plasma protein concentration ratio. After a 2-hour stable baseline, we resected 65% of lung mass (right lung and left upper lobe) and gave whole blood transfusions to maintain cardiac output. During overperfusion of the left lower lobe, lymph flow increased moderately (5.8 +/- 2.3 to 7.7 +/- 3.8 ml/hr) and lymph:plasma protein concentration decreased (0.73 +/- 0.08 to 0.64 +/- 0.08). After a 2-hour stable period, we decreased inspired oxygen in 10 sheep (Pao2 = 40 +/- 3 mm Hg). With added alveolar hypoxia, pulmonary artery pressure increased modestly, but lymph flow and the lymph:plasma protein concentration ratio did not change. In eight sheep (four hypoxic, four normoxic), we raised left atrial pressure approximately 12 cm H2O for 2 hours. Lymph flow rose (10.8 +/- 3.8 ml/h) and lymph:plasma protein concentration decreased further (0.52 +/- 0.07). At each step, lymph:plasma protein concentration decreased, as predicted for the calculated rise in microvascular pressure. There was no evidence that overperfusion, with or without alveolar hypoxia, increased lung endothelial barrier protein permeability.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Reference22 articles.

1. Pathology of high altitude pulmonary edema;Arias-Stella J;Arch Pathol,1963

2. Effects of alveolar hypoxia in unanesthetized sheep;Biand RD;Circ Res,1976

3. Effect of increased vascular pressure on lung fluid balance in unanesthetized sheep.

4. The value of edema fluid protein measurement in patients with pulmonary edema

5. Insensitivity of the alveolar septum to local hypoxia;Fisher AB;Am J Physiol,1972

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3