The influence of molecular form of local anesthetic-type antiarrhythmic agents on reduction of the maximum upstroke velocity of canine cardiac Purkinje fibers.

Author:

Gintant G A,Hoffman B F,Naylor R E

Abstract

We studied the local anesthetic effects of the quaternary lidocaine analogues QX-314, QX-572, and QX-222, the tertiary amine lidocaine, its analogues tocainide, 6603, 6211, and the neutral local anesthetic benzocaine to determine if molecular charge of antiarrhythmic agents influences their local anesthetic effects on heart fibers. We used standard microelectrode techniques and canine cardiac Purkinje fibers to compare the effects of stimulation rate, drug concentration, and K+-induced changes in resting membrane potential on the reduction of fast inward sodium current using the maximum rate of rise of the action potential upstroke, Vmax, as an index of changes in peak sodium current. Use-dependent block, defined as a modulation of the reduction in Vmax by local anesthetics due to changes in the stimulation rate, was observed with the permanently charged analogues and was most prominent for agents existing predominantly in the charged form, but was absent for the neutral local anesthetic benzocaine. The development of use-dependent block during rapid stimulation preceded by prolonged periods of quiescence was an exponential process which became more rapid with increasing drug concentration. Recovery from use-dependent block during quiescence was an exponential process that was not influenced by similar drug concentration changes. All local anesthetics caused tonic block, defined as a drug-induced reduction of Vmax from control that attained a constant value at slow stimulation rates (cycle length range 15 seconds to 2 minutes) and was not changed by prolonged (up to 8 minutes) periods of quiescence. These findings suggest that the charged form of lidocaine and its analogues is responsible for use-dependent block of cardiac sodium channels.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Reference55 articles.

1. A new method for producing short cardiac Purkinje fibers suitable for voltage clamp.

2. Bean BP Cohen CJ Tsien RW (1982) Block of cardiac sodium channels by tetrodotoxin and lidocaine: Sodium current and V max experiments. In Normal and Abnormal Conduction in the Heart: Biophysics Physiology Pharmacology and infrastructure edited by A. Paes de Carvalho B. F. Hoffman M. Lieberman. New York Futura Publishing Co. pp 189-209

3. Bigger JT Jr Hoffman BF (1980) Antiarrhythmic drugs. In The Pharmacological Basis of Therapeutics ed 6 edited by AG Gilman LS Goodman A Gilman. New York Macmillan pp 761-792

4. Electrophysiological Effects of Diphenylhydantoin on Canine Purkinje Fibers

5. Sodium current in single rat heart muscle cells.

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3