Effect of adenosine on atrioventricular conduction. I: Site and characterization of adenosine action in the guinea pig atrioventricular node.

Author:

Clemo H F,Belardinelli L

Abstract

Adenosine has a negative dromotropic effect and modulates hypoxia-induced atrioventricular (AV) conduction delay. To further characterize the negative dromotropic effect of adenosine in the guinea pig heart, we determined the site of adenosine-induced AV conduction block; the effect of uptake and deamination of adenosine on its concentration-negative dromotropic effect, and the adenosine receptor that mediates this action. In isolated AV node preparations (n = 16), adenosine in a dose-dependent manner decreased significantly the duration and amplitude of the action potential of atrionodal and nodal cells and, in addition, markedly depressed the maximum rate of rise of the action potential of nodal cells. At high concentrations (greater than 20 microM), adenosine rendered nodal cells inexcitable. In isolated perfused hearts (n = 7), adenosine (5.7 microM) prolonged total AV conduction time by 21 +/- 2 msec. Of this prolongation, 83% was due to an increase in the nodal-to-His-bundle interval and the remaining 17% to an increase in the atrionodal to nodal interval. Infusion of adenosine to cause a 50% increase (EC50) in atria-to-His bundle (AH) interval prolongation resulted in a perfusate (arterial) adenosine concentration of 5.0 +/- 0.6 microM and effluent (venous) adenosine concentrations of 2.8 +/- 0.4 microM, i.e., an arteriovenous difference of 44% (n = 4). When adenosine uptake and deamination were inhibited with dipyridamole (0.5 microM) plus erythro-9-(2-hydroxy-3-nonyl)adenine (5 microM), respectively, the EC50s were 0.28 +/- 0.02 (perfusate) and 0.32 +/- 0.03 microM (effluent). These data indicate that when nucleoside metabolism is inhibited, arterial and venous concentrations of adenosine reach equilibrium. In an additional 10 hearts, the following rank order of potency of adenosine agonists in causing AH interval prolongation was found: N6-cyclopentyladenosine greater than N6-(L-2-phenyl-isopropyl)adenosine greater than 5'-N-ethylcarboxyamidoadenosine greater than or equal to 2-chloroadenosine greater than adenosine, which is compatible with activation of an A1-type receptor. In summary: the site of adenosine-induced AV conduction block is the nodal zone of the AV node, when adenosine uptake and deamination are inhibited, adenosine in concentrations similar to that released by hypoxia causes significant AH interval prolongation, and the adenosine receptor mediating the negative dromotropic effect of adenosine is of the A1-type.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3