Regulation by calcium of arachidonic acid metabolism in the isolated perfused rabbit heart.

Author:

Weis M T,Malik K U

Abstract

Activation of beta-adrenergic receptors with isoproterenol fails to stimulate prostaglandin synthesis in the isolated rabbit heart perfused with Ca2+-free Krebs-Henseleit buffer. This lack of response could be due to reduced isoproterenol-stimulated liberation of arachidonic acid, reduced cyclooxygenase activity during Ca2+-free perfusion, or both. To test these hypotheses, we have examined the effect of isoproterenol and exogenous arachidonic acid on prostaglandin output in hearts perfused with Ca2+-containing and nominally Ca2+-free Krebs-Henseleit buffer. In hearts prelabelled with [3H]arachidonic acid and perfused with nominally Ca2+-free buffer, the release of radioactivity following isoproterenol was about 90% less than when Ca2+ was included in the perfusion buffer. When exogenous arachidonic acid was administered to hearts perfused with Ca2+-depleted buffer, the output of both 6-keto-prostaglandin F1 alpha and prostaglandin E2 was about threefold greater than when Ca2+ was present in the perfusion medium. In the absence of Ca2+, the dose response curve for arachidonic acid-induced 6-keto-prostaglandin F1 alpha synthesis underwent a parallel shift to the left, with no change in maximal synthesis levels, and a tenfold reduction in the ED50 of arachidonic acid. The cyclooxygenase activities of cell-free homogenates prepared from hearts perfused with and without Ca2+ were not different from each other and were both insensitive to added Ca2+. Reduction of the Na+ concentration of the perfusion medium to 35 mM resulted in increases in arachidonic acid-induced 6-keto-prostaglandin F1 alpha less than those obtained during Ca2+-free perfusion, but greater than that observed during perfusion with normal Na+ (139 mM) and Ca2+ (2.5 mM). Arachidonic acid induced 6-keto-prostaglandin F1 alpha output was inversely correlated with tissue Ca2+ but not Na+ content. These data suggest that in the absence of perfusate Ca2+, the availability of exogenous arachidonic acid to cyclooxygenase is increased, possibly by reduced incorporation into tissue phospholipids.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Reference36 articles.

1. Synthesis of prostaglandins by cultured rat heart myocytes and cardiac mesenchymal cells

2. Prostaglandin synthesis by adult heart myocytes

3. Angiotensin and bradykinin stimulate prostaglandin synthesis in isolated heart cells (abstract);Ellis CK;Fed Proc,1980

4. Sites of prostaglandin synthesis in the bovine heart and isolated bovine coronary microvessels;Gerritsen ME;CircRes,1981

5. Prostaglandin and thromboxane production by fibroblasts and vascular endothelial cells

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3