A simulation study of the effects of torso inhomogeneities on electrocardiographic potentials, using realistic heart and torso models.

Author:

Gulrajani R M,Mailloux G E

Abstract

The effects of torso inhomogeneities on electrocardiographic potentials were investigated via computer stimulation, using a 23-dipole heart model placed within a realistically shaped human torso model. The transfer coefficients relating the individual dipoles to the torso surface potentials, as well as the body surface potential maps, the vectorcardiogram, and the 12-lead electrocardiogram resulting due to normal activation of the heart model, were calculated for each of the following torso conditions: homogeneous, homogeneous + skeletal muscle layer, homogeneous + muscle layer + lungs, and homogeneous + muscle layer + lungs + intraventricular blood masses. The effects of each inhomogeneity were deduced by comparing results before and after its inclusion. For individual dipole transfer coefficients we confirm the validity of the "Brody effect," whereby the high conductivity blood masses augment radially oriented dipoles and diminish tangentially oriented ones. With regard to the vectorcardiogram , the electrocardiogram, and the body surface potential maps, the major qualitative effects were an augmentation of the head-to-foot component of the vectorcardiogram due to the lungs, and a smoothening of notches in the electrocardiogram (temporal filtering) and of isopotential contours in the body surface potential maps (spatial filtering) with a consequent loss of information, due to the blood masses, muscle layer, and, to a lesser extent, the lungs. Besides the above qualitative effects of the inhomogeneities, there were also large quantitative effects on the surface potentials, namely, magnitude increases due to the blood masses and magnitude decreases due to the muscle layer, that--if unaccounted for--could compromise the inverse solution of these potentials for the cardiac dipole sources.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3