Interstitial cells of the heart valves possess characteristics similar to smooth muscle cells.

Author:

Filip D A,Radu A,Simionescu M

Abstract

Interstitial cells of heart atrioventricular and sigmoid valves were examined in several laboratory animals (rabbit, hamster, rat, and mouse) and in humans. These cells constitute a large fraction of the total cell population of the valve; in mouse atrioventricular valves, they amount to approximately 30% of the volumetric density. By their ultrastructural features and functional properties, valvular interstitial cells are intermediate between fibroblasts and vascular smooth muscle cells. Like fibroblasts, valvular interstitial cells lack a basal lamina establishing direct and extensive contacts with collagen fibers, elastin microfibrils, and proteoglycans of the matrix. The cells have numerous slender and long processes, connected to one another, forming a complex cellular framework spanning the entire valve. Similar to smooth muscle cells, valvular interstitial cells are extensively coupled by communicating junctions as shown by thin sections, freeze-fracture, lanthanum staining, and carboxyfluorescein microinjection. The cells contain numerous bundles of actin filaments, which are decorated by the S1 fragment of heavy meromyosin. Valvular interstitial cells also express cyclic guanosine-monophosphate-dependent protein kinase, as detected by immunofluorescence and immunoperoxidase histochemistry. Motor nerve endings are located closely apposed to valvular interstitial cells: structurally most of them appear to be of the adrenergic type. Valvular interstitial cells contract on epinephrine or angiotensin II stimulation as shown both in culture and in situ (valvular strips). Taken together these observations suggest that VIC may have contractile properties, which can account for a controlled tonus, actively correlated with the cyclically changing forces acting on valves during diastole and systole.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Reference51 articles.

1. Filip DA: Mouse atrio-ventricular valve ultrastructure. Mor

2. phometrical correlations. Rev Roum Morphol Embryol Physiol

3. 1984;30:165-173

4. Wit AL Fenoglio JJ Jr Hordoff A Reemtsma K: Ultrastruc

5. ture and transmembrane potentials of cardiac muscle in the

Cited by 189 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3