Dynamic interactions and mutual synchronization of sinoatrial node pacemaker cells. A mathematical model.

Author:

Michaels D C,Matyas E P,Jalife J

Abstract

Dynamic interactions and mutual entrainment of coupled sinoatrial pacemaker cells with different intrinsic frequencies were investigated using a computerized mathematical model. Transmembrane potentials were simulated using equations of individual membrane currents based on voltage clamp data for the sinoatrial node. The intrinsic frequency of a given cell was altered by applying bias hyperpolarizing current, or by changing the amount of slow inward current. Cells were coupled through simple ohmic resistances to form linear arrays of two or more cells. Simulations closely reproduced previous experimental work showing that the mutual interactions between pacemakers are mediated electrotonically and show phase dependence. Results from the present simulations provide an explanation for the ionic basis of these phase-dependent interactions. In addition, it is demonstrated that the mutual entrainment of coupled pacemakers can lead to their coordinated behavior (synchronization). Two pacemaker cells can synchronize at simple harmonic (i.e., 1:1, 2:1, etc.) or more complex ratios (3:2, 5:3, etc.), depending on the differences in intrinsic frequencies and the degree of electrical coupling between cells. Simulations using larger numbers of linearly connected cells yielded various patterns of pacemaker activity including 2:1 sinoatrial block and complex dysrhythmic activity. The overall results may be used to predict higher order interactions of thousands of cells comprising the sinus node. Under such a scheme, synchronization occurs not by the conducted influence of a dominant pacemaker cell, but by the mutual "democratic" interaction of individual pacemaker cells.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Reference38 articles.

Cited by 89 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3