Coronary pressure-flow relationships. Controversial issues and probable implications.

Author:

Klocke F J,Mates R E,Canty J M,Ellis A K

Abstract

On the basis of the material discussed, our current assessments of the controversial points mentioned at the beginning of this article may be summarized as follows: Pf = 0, the minimum back pressure to coronary flow associated with a measurable conductance, is indeed greater than coronary outflow pressure (and usually left ventricular diastolic pressure, as well). Pf = 0 needs to be taken into account in attempts to determine coronary driving pressure. In maximally vasodilated beds, Pf = 0 derived from diastolic pressure-flow relationships exceeds coronary outflow pressure by at least a few mm Hg. Pf = 0 varies with coronary outflow and/or diastolic ventricular cavity pressure. When left ventricular preload is elevated, Pf = 0 exceeds outflow pressure by increasing amounts. Pf = 0 appears to be systematically higher and pressure-dependent in beds in which vasomotor tone is operative. An improved understanding of the nature of, and basis for, time-dependent changes in resistance and/or Pf = 0 during long diastoles in nonvasodilated beds is needed. The contour of pressure-flow relationships which are free of reactive effects is curvilinear rather than linear. The degree of curvilinearity is substantial and can change with interventions. Curvilinearity is accentuated at lower pressures and may reflect changes in the number of perfused vascular channels as well as the caliber of individual channels. Capacitive effects need to be dealt with quantitatively in studies of pressure-flow relationships. Values of the capacitance which is involved in these effects vary with both pressure and tone. Capacitive flow also depends upon the instantaneous rate of change of pressure, which has not usually been defined in published studies. Although intramyocardial capacitance is large and plays an important role in systolic-diastolic flow interactions, a controlling role in diastolic coronary arterial pressure-flow relationships has not been established experimentally. In vasodilated beds, in-flow remains remarkably constant for several seconds after the brief transient associated with a step-change in the level of constant pressure perfusion during a long diastole. Calculations of coronary vascular resistance (by whatever method) remain of limited value, particularly when changes in response to an intervention are modest. Because of the curvilinear diastolic pressure-flow relationship, resistance is pressure-dependent and, at any given pressure, is probably best defined by establishing the slope of a diastolic pressure-flow curve which is free of reactive effects.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Reference70 articles.

1. Transmural distribution of intrinsic and transmitted left ventricular diastolic intramyocardial pressure in dogs

2. Preloadinduced alterations in capacitance-free diastolic pressure-flow relationships;Aversano T;Am J Physiol,1984

3. Effect of increased hematocrit on maximal coronary vascular conductance and O2 delivery (abstr);Baer RW;Fed Proc,1981

Cited by 170 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Myocardial Bridge and Atherosclerosis, an Intimal Relationship;Current Atherosclerosis Reports;2024-06-01

2. Use of Venous Pressuras a Probe for Waterfall-Like Behavior in the Coronary Bed;Analysis and Simulation of the Cardiac System — Ischemia;2020-10-28

3. Use of Venous Pressuras a Probe for Waterfall-Like Behavior in the Coronary Bed;Analysis and Simulation of the Cardiac System — Ischemia;2020-10-08

4. Coronary Microcirculation in Aortic Stenosis: Pathophysiology, Invasive Assessment, and Future Directions;Journal of Interventional Cardiology;2020-07-22

5. Exercise and the Coronary Circulation;Muscle and Exercise Physiology;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3