Communication between feed arteries and microvessels in hamster striated muscle: segmental vascular responses are functionally coordinated.

Author:

Segal S S,Duling B R

Abstract

Pressures in the primary arterioles of the cremaster muscle are reported to be approximately 50% of systemic, indicating that arterial resistance proximal to microvessels is high and may limit maximal blood flow. With no change in arterial resistance, increases in perfusion normally associated with muscle work either could not occur or would require increments in systemic pressure far greater than those actually observed in vivo. Therefore, we hypothesized that the small arteries feeding the muscle may participate in the hyperemic response. To test this hypothesis, male golden hamsters (n = 31, 118 g) were anesthetized (pentobarbital, 70 mg/kg i.p.), and the right cremaster was opened to expose its feed arteries, which originated from the iliac artery. Preparations were superfused and maintained at 35 +/- 1 degree C. Feed arteries had substantial tone, as shown by the fact that topical acetylcholine, applied at supramaximal concentration, dilated these vessels from 115 +/- 8 microns at rest to 158 +/- 9 microns (mean +/- SE; n = 38 vessels; p less than 0.01), corresponding to an estimated 4.4-fold increase in conductance. Stimulation of the sectioned motor nerve (8 Hz, 30 seconds) induced striated muscle contraction and increased feed vessel diameter from 93 +/- 5 microns to 116 +/- 5 microns (n = 14; p less than 0.01), consistent with a 2.6-fold increase in conductance. A 5-minute occlusion of the iliac artery resulted in feed artery dilation of similar magnitude. Supramaximal doses of acetylcholine applied topically to the distal portions of the cremaster resulted in striated muscle contraction and a dilation that propagated upstream to increase feed artery diameter by 25%.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3