Author:
Hoerter J A,Miceli M V,Renlund D G,Jacobus W E,Gerstenblith G,Lakatta E G
Abstract
Isolated adult rat hearts perfused in an isovolumic mode were used to study the effects of sodium-potassium pump inhibition and sodium-calcium exchange alterations on the tissue content of adenosine triphosphate, phosphocreatine, inorganic phosphate, and intracellular pH, all measured by phosphorus-31 nuclear magnetic resonance spectroscopy. Rates of oxygen consumption, contractile function, and the cell contents of calcium, sodium, and potassium also were determined. The inhibition of sodium-potassium adenosine triphosphatase, either by the reduction in perfusate potassium from 5.9 to 1 millimolar or less, or by the addition of 10(-4) molar ouabain, transiently increased systolic pressure. This was followed by a decrease in systolic pressure, an increase in diastolic pressure, and eventual inexcitability. This contractile profile was accompanied by a persistent increase in oxygen consumption, a monotonic decline in cellular adenosine triphosphate and phosphocreatine content, the development of marked intracellular acidosis, a gain in cell sodium and calcium content, and a reduction in cell potassium. Quite similar metabolic changes were also observed when cell calcium was increased after a reduction in perfusate sodium. These metabolic and contractile effects could be prevented or reversed by decreasing perfusate calcium. The results emphasize the profound role of calcium in modulating cell oxygen consumption, energy balance, pH, excitability, and force production. These data are discussed in light of changes in the myocardial energy supply/demand balance, as well as from the viewpoint of the known competition between mechanisms for mitochondrial calcium transport vs. high-energy phosphate production.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Cardiology and Cardiovascular Medicine,Physiology
Cited by
84 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献