Actions of adenosine and isoproterenol on isolated mammalian ventricular myocytes.

Author:

Belardinelli L,Isenberg G

Abstract

We investigated the effects of adenosine and isoproterenol on enzymatically dispersed ventricular myocytes from bovine and guinea pig hearts. Intracellular stimulation of relaxed myocytes with regular striation patterns and normal resting potential resulted in action potentials with full plateaus accompanied by contractions. Adenosine in concentrations up to 0.2 mM had no significant effect on any of the action potential parameters or on the basal contractility. In contrast, in the same cells, adenosine effectively antagonized the stimulatory effect of isoproterenol. Isoproterenol (1-10 nM) prolonged the action potentials by 34-41%, displaced the plateau to more positive potentials, and caused a 3-fold increase in the extent of myocyte sarcomere shortening. In the presence of adenosine (5-50 microM), isoproterenol increased the action potential duration by only 8-9%, the shift of the plateau was nearly abolished, and the increase in the extent of myocyte sarcomere shortening was less than 10%. In some of the myocytes, isoproterenol (1-10 nM) induced depolarizing afterpotentials accompanied by aftercontractions. The afterdepolarizations occasionally reached threshold resulting in triggered sustained rhythmic activity. Adenosine (20-50 microM) not only reduced the amplitude of the afterdepolarizations and aftercontractions, but also abolished the sustained rhythmic activity. We conclude, first, that isolated ventricular myocytes respond to isoproterenol and adenosine; second, that adenosine has no direct effect, but effectively antagonizes the stimulatory actions of isoproterenol; third, that findings are consistent with the ones reported for multicellular ventricular preparations; fourth, that adenosine concentrations required to attenuate the actions of isoproterenol are in the range of adenosine concentrations released by cardiac cells when oxygen availability is limited and/or demand is increased; and fifth, that endogenously released adenosine may modulate the electrophysiological and contractile effects of catecholamines.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 221 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3