Synergistic effects of acute hypoxemia and hypercapnic acidosis in conscious dogs. Renal dysfunction and activation of the renin-angiotensin system.

Author:

Rose C E,Kimmel D P,Godine R L,Kaiser D L,Carey R M

Abstract

The effects of acute hypoxemia and hypercapnic acidosis were examined in five unanesthetized dogs in which sodium intake was controlled at 80 mEq/24 hours for 4 days prior to study. Each animal was studied during combined acute hypoxemia and hypercapnic acidosis (Pao2 = 36 +/- 1 mm Hg, Paco2 = 52 +/- 1 mm Hg, pH = 7.18 +/- 0.02), acute hypoxemia alone (Pao2 = 32 +/- 1 mm Hg, Paco2 = 32 +/- 1mm Hg, pH = 7.34 +/- 0.01), and acute hypercapnic acidosis alone (Pao2 = 82 +/- 2 mm Hg, Paco2 = 51 +/- 1 mm Hg, pH = 7.18 +/- 0.02). Although mean arterial pressure, cardiac output, and heart rate increased during combined hypoxemia and hypercapnic acidosis, effective renal plasma flow and glomerular filtration rate decreased. In addition, filtered sodium load and urinary sodium excretion decreased during combined hypoxemia and hypercapnic acidosis. Either acute hypoxemia or hypercapnic acidosis alone resulted in increased mean arterial pressure, cardiac output, and heart rate. However, in contrast to their combined effects, renal hemodynamic function was unchanged and natriuresis was observed. Measurement of plasma renin activity and angiotensin II concentrations indicated that hypoxemia or hypercapnic acidosis alone resulted in moderate activation of the renin-angiotensin system. Moreover, combined hypoxemia and hypercapnic acidosis acted synergistically resulting in major renin-angiotensin activation. Systemic angiotensin II blockade using 1-sarcosine, 8-alanine, angiotensin II (2 micrograms/kg per min) during combined acute hypoxemia and hypercapnic acidosis resulted in decreased renal hemodynamic function. We conclude that acute hypoxemia and hypercapnic acidosis act synergistically to increase mean arterial pressure, diminish renal hemodynamic function and activate the renin-angiotensin system. Systemic angiotensin inhibition studies suggest activation of the renin-angiotensin system maintains renal hemodynamic function during combined hypoxemia and hypercapnic acidosis, instead of mediating the renal vasoconstriction.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Reference36 articles.

1. Inter-relationships between renal and cardiac function and respiratory gas exchange in obstructive airways disease;Aber GM;Clin Sci,1963

2. Effects of Hypoxia on Renal Tubular Function

3. Mechanism of effect of hypercapnic acidosis on renin secretion in the dog;Anderson RJ;Am J Physiol,1980

4. The effects of breathing 5 to 7% carbon dioxide on urine flow and mineral excretion;Barbour A;Clin Sci,1953

5. Elevation in plasma ADH levels during PEEP ventilation in the dog: mechanisms involved;Bark H;Am J Physiol,1980

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3