The wavelength of the cardiac impulse and reentrant arrhythmias in isolated rabbit atrium. The role of heart rate, autonomic transmitters, temperature, and potassium.

Author:

Smeets J L,Allessie M A,Lammers W J,Bonke F I,Hollen J

Abstract

We measured the wavelength of the cardiac impulse, defined as the distance traveled by the depolarization wave during the functional refractory period, in isolated narrow strips of rabbit atrium. During control, wavelength was 42 mm during pacing with 2 Hz, and was 28 mm at the maximum pacing rate; early premature beats had a wavelength as short as 23 mm. Administration of carbamylcholine (4 X 10(-7) g/ml) shortened the wavelength to 21 mm during 2 Hz, 18 mm at the maximum pacing rate Fmax, and 16 mm during an early premature impulse, respectively. The effects of epinephrine (6 X 10(-7) M) were strongly rate dependent. At slow heart rates, epinephrine clearly prolonged the wavelength (58 mm), whereas, during maximum pacing, wavelength remained unchanged (28 mm). Hypokalemia (2 mM) decreased the length of the impulse at all stimulation frequencies. Moderate hyperkalemia (5.6 and 7.0 mM) did not modify wavelength because refractoriness and conduction velocity were affected proportionally. Above 7.0 mM potassium, the wavelength became progressively prolonged because of the development of post-repolarization refractoriness. Cooling to 27 degrees C resulted in a slight lengthening of the impulse. At lower temperatures, however, wavelength prolonged significantly because of a relatively strong prolongation of the refractory period. In separate experiments in 15 X 20 mm segments of atrium, reentrant tachyarrhythmias were induced and the circuit size compared with the wavelength. The size of intraatrial circuits was similar to the magnitude of the measured wavelength during maximum pacing. Carbamylcholine and hypokalemia, both of which shorten the impulse length, also clearly decreased the size of reentrant circuits. Cooling to 27 degrees C, which affects both refractoriness and conduction velocity, only slightly prolonged the wavelength; accordingly, the size of reentrant circuits at 27 degrees C was only slightly longer than at 37 degrees C. These experiments emphasize the importance of the wavelength of the cardiac impulse in relation to the occurrence of intramyocardial reentry.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3