Effects of acetylcholine on electrophysiological properties of rabbit cardiac Purkinje fibers.

Author:

Mubagwa K,Carmeliet E

Abstract

The action of acetylcholine (10(-9)-10(-4) M) was investigated in isolated rabbit cardiac Purkinje fibers, using standard microelectrode recording of transmembrane potentials and two-microelectrode voltage clamp technique. In nonstimulated fibers, acetylcholine hyperpolarized the diastolic membrane potential and slowed or suppressed spontaneous activity. The hyperpolarization was more pronounced in low potassium solutions and in depolarized fibers; it was less marked in the presence of cesium (2 X 10(-2) M), and was suppressed by barium (3-5 X 10(-3) M). In stimulated fibers, acetylcholine shortened the action potential duration and shifted the plateau level to more negative values; this effect was influenced little by the stimulation frequency and not by chloride removal from the perfusing solution. In voltage-clamped preparations, acetylcholine shifted the holding current in the outward direction at potentials less negative than EK, while it shifted the current in the inward direction at potentials more negative than EK. The changes induced by acetylcholine were concentration-dependent (apparent KM: 1.5 X 10(-7) M); they were mimicked by carbachol (10(-8)-10(-5) M) and blocked by atropine (10(-8)-10(-7) M). The time course of the effects was biphasic: a maximum was reached in the first minute after addition of acetylcholine; thereafter, the effect decayed to a steady value. On removal of acetylcholine, a transient inversion of the changes produced by acetylcholine was observed, the magnitude of which depended on the acetylcholine concentration used and on the duration of exposure to acetylcholine. This time course was not abolished by pretreatment with physostigmine (10(-6) M), manganese ions (2 X 10(-3) M), or with adrenoceptor blockers [propranolol (2 X 10(-7) M) and/or phentolamine (10(-7)-10(-6) M)]. The results show that rabbit Purkinje fibers are as sensitive to acetylcholine as atrial preparations. The changes produced by acetylcholine are suggestive of an increase in an inward rectifying potassium ion conductance and are mediated by muscarinic receptor stimulation. The secondary decay in the effects of acetylcholine and their inversion on washout can be explained by a desensitization mechanism if it is assumed that the acetylcholine-sensitive channel is already functional in the absence of acetylcholine and is modulated in its conductance and/or open state probability by acetylcholine.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Reference53 articles.

1. Inhibition by Cs of background current and carbachol-induced current in frog atrium (abstr);Argibay JA;J Physiol (Lond),1981

2. On the negative inotropic effect in the cat's auricle

3. Chloride ions and the membrane potential of Purkinje fibres

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3