Phasic coronary blood flow velocity in intramural and epicardial coronary arteries.

Author:

Chilian W M,Marcus M L

Abstract

Knowledge concerning phasic coronary blood flow is based primarily on measurements obtained from epicardial coronary arteries, which, in part, function as capacitors. If present, epicardial capacitance effects could obscure the dynamic nature of phasic intramyocardial perfusion. To analyze this effect of epicardial capacitance, we simultaneously measured coronary blood flow velocity in an epicardial artery (left anterior descending) and an intramural artery (septal) in open-chest, anesthetized dogs. During control conditions, the percentage of total coronary blood flow velocity occurring during diastole per cardiac cycle was significantly greater (P less than 0.05) in the septal artery (92%) than in the left anterior descending artery (75%). Furthermore, blood flow velocity during mid-systole in the septal artery was retrograde (-7.2%), whereas blood flow velocity at this time was antegrade in the left anterior descending artery (+3.5%). Blood flow velocity measurements from small epicardial arteries just before they penetrated into the myocardium revealed a phasic pattern similar to that of the septal artery. This suggests that the phasic blood velocity pattern in penetrating coronary arteries, in general, is different than that in large epicardial arteries. During vasodilation following nitroglycerin, dipyridamole, or a 20-second occlusion of the left main coronary artery, the retrograde component of mid-systolic blood velocity persisted in the septal artery, despite large increases (300-400%) in the mid-systolic antegrade component of blood flow velocity in the left anterior descending artery. These qualitative and quantitative differences in phasic blood flow velocity between intramural and large epicardial arteries are best reconciled by postulating the existence of a significant coronary capacitor.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 193 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3