Resting membrane potential, extracellular potassium activity, and intracellular sodium activity during acute global ischemia in isolated perfused guinea pig hearts.

Author:

Kléber A G

Abstract

Transmembrane potentials, extracellular potassium activity, and intracellular sodium activity were determined during acute global ischemia in Langendorff perfused guinea pig ventricles by microelectrode techniques. Resting membrane potential decreased with a sigmoidal time course from -82 mV to -49.5 +/- 2.7 mV (SD, n = 6) and extracellular potassium activity increased from 4 to 5 mM to 14.7 +/- 1.3 mM (n = 8) during 15 minutes of ischemia. The estimated potassium equilibrium potential was 7 mV more negative than resting membrane potential prior to occlusion, but approached resting membrane potential during ischemia. An increase in extracellular potassium accumulation occurred when heart rate was increased abruptly from 60 to 170 beats/min. After rapid stimulation, a transient decrease of extracellular potassium activity occurred which was abolished in the presence of 10(-6) M strophanthidin. If the preparations were paced before and after aortic occlusion at a constant rate, potassium accumulation was independent of heart rate within a range of 50-170 beats/min. Intracellular sodium activity was 8.8 +/- 2.8 mM (n = 8) prior to occlusion and decreased slightly to values between 4.7 and 7.6 mM after 10-15 minutes of ischemia. The results suggest that relative potassium permeability largely predominates over relative sodium permeability during the decrease of resting membrane potential after interruption of aortic flow. Furthermore, active sodium-potassium exchange compensates for the rate-dependent fraction of potassium efflux and maintains a low intracellular sodium activity. For reasons of electroneutrality, the potassium efflux underlying extracellular potassium accumulation must be balanced by an equivalent charge movement which is not carried by sodium. The most probable hypothesis regarding the charge carriers is that net potassium efflux occurs secondary to efflux of phosphate and lactate generated during ischemia.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 444 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3