Modulation of canine myocardial sarcolemmal membrane fluidity by amphiphilic compounds.

Author:

Fink K L,Gross R W

Abstract

Amphiphilic moieties such as lysophosphoglycerides and long-chain acyl carnitines accumulate in ischemic myocardium and potentially contribute to the sequelae of myocardial ischemia. To characterize alterations in membrane molecular dynamics produced by amphiphilic compounds, highly purified preparations of canine myocardial sarcolemma were spin-labeled with paramagnetic probes (5-, 12-, or 16-doxyl stearate), and alterations produced by amphiphilic compounds were quantified by electron spin resonance spectroscopy. Incorporation of 1.5, 3, or 6 mol % palmitoyl lysophosphatidylcholine resulted in a decrease of the order parameter of 16-doxyl stearate from 0.164 to 0.161, 0.155, and 0.145, respectively. Similar increases in membrane fluidity in the interior of the bilayer were present when palmitoyl lysophosphatidylethanolamine, L-palmitoyl carnitine, and platelet-activating factor were incorporated into sarcolemma. In contrast, incubation of sarcolemma with lysophosphatidylcholine did not result in significant change of the order parameter of 5-doxyl stearate, even at 6 mol %, demonstrating that lysophosphatidylcholine increases the transmembrane fluidity gradient. Sarcolemma treated with phospholipase A2 exhibited a time-dependent decrease in the rotational correlation time and order parameter when lysophospholipids constituted a small amount (6%) of sarcolemmal phospholipids. Furthermore, the effects of lysophosphatidylcholine were not dependent upon its physical state, since bilayers composed of gramicidin and lysophosphatidylcholine resulted in similar increases in membrane fluidity as micellar lysophosphatidylcholine. The results suggest that alterations in sarcolemmal molecular dynamics are one mechanism through which amphiphilic moieties mediate their multiple effects. Such alterations could contribute to the electrophysiological and biochemical sequelae of myocardial ischemia.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3