Predictive Accuracy of a Clinical and Genetic Risk Model for Atrial Fibrillation

Author:

Khurshid Shaan123ORCID,Mars Nina4ORCID,Haggerty Christopher M.56ORCID,Huang Qiuxi78ORCID,Weng Lu-Chen23,Hartzel Dustin N.9ORCID,Lunetta Kathryn L.78ORCID,Ashburner Jeffrey M.10ORCID,Anderson Christopher D.11123ORCID,Benjamin Emelia J.13148ORCID,Salomaa Veikko15ORCID,Ellinor Patrick T.2163ORCID,Fornwalt Brandon K.56ORCID,Ripatti Samuli41718ORCID,Trinquart Ludovic78ORCID,Lubitz Steven A.2163ORCID,

Affiliation:

1. Division of Cardiology (S.K.), Massachusetts General Hospital, Boston.

2. Cardiovascular Research Center (S.K., L.-C.W., P.T.E., S.A.L.), Massachusetts General Hospital, Boston.

3. Cardiovascular Disease Initiative, Broad Institute of Harvard & Massachusetts Institute of Technology, Cambridge (S.K., L.-C.W., C.D.A., P.T.E., S.A.L.).

4. Institute for Molecular Medicine Finland, FIMM, HiLIFE (N.M., S.R.), University of Helsinki, Finland.

5. Heart Institute (C.M.H., B.K.F.) and Informatics, Geisinger, Danville, PA.

6. Department of Translational Data Science (C.M.H., B.K.F.) and Informatics, Geisinger, Danville, PA.

7. Department of Biostatistics (Q.H., K.L.L, L.T.), Boston University School of Medicine.

8. Boston University and National Heart, Lung, and Blood Institute’s Framingham Heart Study, MA ((Q.H., K.L.L, E.J.B., L.T.).

9. Phenomic Analytics and Clinical Data Core, Geisinger Health, Danville, PA (D.N.H.).

10. Division of General Internal Medicine (J.M.A.), Massachusetts General Hospital, Boston.

11. Henry and Allison McCance Center for Brain Health (C.D.A.), Massachusetts General Hospital, Boston.

12. Center for Genomic Medicine (C.D.A.), Massachusetts General Hospital, Boston.

13. Sections of Preventive Medicine and Cardiovascular Medicine, Department of Medicine (E.J.B.), Boston University School of Medicine.

14. Department of Epidemiology, Boston University School of Public Health, Boston (E.J.B.).

15. Regeneron Pharmaceuticals, Tarrytown, NY. Finnish Institute for Health and Welfare, Helsinki, Finland (V.S.).

16. Cardiac Arrhythmia Service (P.T.E., S.A.L.), Massachusetts General Hospital, Boston.

17. Department of Public Health (S.R.), University of Helsinki, Finland.

18. Broad Institute of Harvard & Massachusetts Institute of Technology, Cambridge, MA (S.R.).

Abstract

Background: Atrial fibrillation (AF) risk estimation using clinical factors with or without genetic information may identify AF screening candidates more accurately than the guideline-based age threshold of ≥65 years. Methods: We analyzed 4 samples across the United States and Europe (derivation: UK Biobank; validation: FINRISK, Geisinger MyCode Initiative, and Framingham Heart Study). We estimated AF risk using the CHARGE-AF (Cohorts for Heart and Aging Research in Genomic Epidemiology AF) score and a combination of CHARGE-AF and a 1168-variant polygenic score (Predict-AF). We compared the utility of age, CHARGE-AF, and Predict-AF for predicting 5-year AF by quantifying discrimination and calibration. Results: Among 543 093 individuals, 8940 developed AF within 5 years. In the validation sets, CHARGE-AF (C index range, 0.720–0.824) and Predict-AF (0.749–0.831) had largely comparable discrimination, both favorable to continuous age (0.675–0.801). Calibration was similar using CHARGE-AF (slope range, 0.67–0.87) and Predict-AF (0.65–0.83). Net reclassification improvement using Predict-AF versus CHARGE-AF was modest (net reclassification improvement range, 0.024–0.057) but more favorable among individuals aged <65 years (0.062–0.11). Using Predict-AF among 99 530 individuals aged ≥65 years across each sample, 70 849 had AF risk <5%, of whom 69 067 (97.5%) did not develop AF, whereas 28 681 had AF risk ≥5%, of whom 2264 (7.9%) developed AF. Of 11 379 individuals aged <65 years with AF risk ≥5%, 435 (3.8%) developed AF before age 65 years, with roughly half (46.9%) meeting anticoagulation criteria. Conclusions: AF risk estimation using clinical factors may prioritize individuals for AF screening more precisely than the age threshold endorsed in current guidelines. The additional value of genetic predisposition is modest but greatest among younger individuals.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3