Functionally Conserved Noncoding Regulators of Cardiomyocyte Proliferation and Regeneration in Mouse and Human

Author:

Adamowicz Martyna1,Morgan Claire C.1,Haubner Bernhard J.1,Noseda Michela1,Collins Melissa J.1,Abreu Paiva Marta1,Srivastava Prashant K.1,Gellert Pascal1,Razzaghi Bonnie1,O’Gara Peter1,Raina Priyanka1,Game Laurence1,Bottolo Leonardo1,Schneider Michael D.1,Harding Sian E.1,Penninger Josef1,Aitman Timothy J.1

Affiliation:

1. From the Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Scotland, United Kingdom (T.J.A.); National Heart and Lung Institute (M.A., C.C.M., M.N., M.A.P., P.O., M.D.S., S.E.H.), Department of Medicine (C.C.M., M.J.C., P.K.S., B.R., P.R., T.J.A.), Department of Mathematics (L.B.), Imperial College London, United Kingdom; IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria (B.J.H., J.P.);...

Abstract

Background: The adult mammalian heart has little regenerative capacity after myocardial infarction (MI), whereas neonatal mouse heart regenerates without scarring or dysfunction. However, the underlying pathways are poorly defined. We sought to derive insights into the pathways regulating neonatal development of the mouse heart and cardiac regeneration post-MI. Methods and Results: Total RNA-seq of mouse heart through the first 10 days of postnatal life (referred to as P3, P5, P10) revealed a previously unobserved transition in microRNA (miRNA) expression between P3 and P5 associated specifically with altered expression of protein-coding genes on the focal adhesion pathway and cessation of cardiomyocyte cell division. We found profound changes in the coding and noncoding transcriptome after neonatal MI, with evidence of essentially complete healing by P10. Over two-thirds of each of the messenger RNAs, long noncoding RNAs, and miRNAs that were differentially expressed in the post-MI heart were differentially expressed during normal postnatal development, suggesting a common regulatory pathway for normal cardiac development and post-MI cardiac regeneration. We selected exemplars of miRNAs implicated in our data set as regulators of cardiomyocyte proliferation. Several of these showed evidence of a functional influence on mouse cardiomyocyte cell division. In addition, a subset of these miRNAs, miR-144-3p, miR-195a-5p, miR-451a, and miR-6240 showed evidence of functional conservation in human cardiomyocytes. Conclusions: The sets of messenger RNAs, miRNAs, and long noncoding RNAs that we report here merit further investigation as gatekeepers of cell division in the postnatal heart and as targets for extension of the period of cardiac regeneration beyond the neonatal period.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3