A Mammalian Myocardial Cell-Free System to Study Cell Cycle Reentry in Terminally Differentiated Cardiomyocytes

Author:

Engel Felix B.1,Hauck Ludger1,Cardoso M. Cristina1,Leonhardt Heinrich1,Dietz Rainer1,von Harsdorf Rüdiger1

Affiliation:

1. From the Department of Cardiology (F.B.E., L.H., R.D., R.v.H.), Franz Volhard Clinic, Humboldt University, and the Max Delbrück Center for Molecular Medicine (M.C.C., H.L.), Berlin, Germany.

Abstract

Abstract —Cardiomyocytes withdraw from the cell cycle in the early neonatal period, rendering the adult heart incapable to regenerate after injury. In the present study, we report the establishment of a cell-free system to investigate the control of cell cycle reentry in mammalian ventricular cardiomyocyte nuclei and to specifically address the question of whether nuclei from terminally differentiated cardiomyocytes can be stimulated to reenter S phase when incubated with extracts from S-phase cells. Immobilized cardiomyocyte nuclei were incubated with nuclei and cytoplasmic extract of synchronized H9c2 muscle cells or cardiac nonmyocytes. Ongoing DNA synthesis was monitored by biotin-16-dUTP incorporation as well as proliferating cell nuclear antigen expression and localization. Nuclei and cytoplasmic extract from S-phase H9c2 cells but not from H9c2 myotubes induced DNA synthesis in 92% of neonatal cardiomyocyte nuclei. Coincubation in the presence of cycloheximide indicated that de novo translation is required for the reinduction of S phase. Similar results were obtained with adult cardiomyocyte nuclei. When coincubated with both cytoplasmic extract and nuclei or nuclear extracts of S-phase cells, >70% of adult cardiomyocyte nuclei underwent DNA synthesis. In conclusion, these results demonstrate that postmitotic ventricular myocyte nuclei are responsive to stimuli derived from S-phase cells and can thus bypass the cell cycle block. This cell-free system now makes it feasible to analyze the molecular requirements for the release of the cell cycle block and will help to engineer strategies for regenerative growth in cardiac muscle.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3