Myocardial Cell Death in Human Diabetes

Author:

Frustaci Andrea1,Kajstura Jan1,Chimenti Cristina1,Jakoniuk Igor1,Leri Annarosa1,Maseri Attilio1,Nadal-Ginard Bernardo1,Anversa Piero1

Affiliation:

1. From the Department of Medicine (J.K., I.J., A.L., B.N.-G., P.A.), New York Medical College, Valhalla, NY, and Department of Cardiology (A.F., C.C., A.M.), Sacred Heart University, Rome, Italy.

Abstract

Abstract —The renin-angiotensin system is upregulated with diabetes, and this may contribute to the development of a dilated myopathy. Angiotensin II (Ang II) locally may lead to oxidative damage, activating cardiac cell death. Moreover, diabetes and hypertension could synergistically impair myocardial structure and function. Therefore, apoptosis and necrosis were measured in ventricular myocardial biopsies obtained from diabetic and diabetic-hypertensive patients. Accumulation of a marker of oxidative stress, nitrotyrosine, and Ang II labeling were evaluated quantitatively. The diabetic heart showed cardiac hypertrophy, cavitary dilation, and depressed ventricular performance. These alterations were more severe with diabetes and hypertension. Diabetes was characterized by an 85-fold, 61-fold, and 26-fold increase in apoptosis of myocytes, endothelial cells, and fibroblasts, respectively. Apoptosis in cardiac cells did not increase additionally with diabetes and hypertension. Diabetes increased necrosis by 4-fold in myocytes, 9-fold in endothelial cells, and 6-fold in fibroblasts. However, diabetes and hypertension increased necrosis by 7-fold in myocytes and 18-fold in endothelial cells. Similarly, Ang II labeling in myocytes and endothelial cells increased more with diabetes and hypertension than with diabetes alone. Nitrotyrosine localization in cardiac cells followed a comparable pattern. In spite of the difference in the number of nitrotyrosine-positive cells with diabetes and with diabetes and hypertension, apoptosis and necrosis of myocytes, endothelial cells, and fibroblasts were detected only in cells containing this modified amino acid. In conclusion, local increases in Ang II with diabetes and with diabetes and hypertension may enhance oxidative damage, activating cardiac cell apoptosis and necrosis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 697 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3