Mechanisms of Deficient Cardiac Septation in the Mouse With Trisomy 16

Author:

Webb Sandra1,Anderson Robert H.1,Lamers Wouter H.1,Brown Nigel A.1

Affiliation:

1. From the Department of Anatomy and Developmental Biology (S.W., N.A.B.), St. George’s Hospital Medical School, London, United Kingdom; Section of Paediatrics (R.H.A.), National Heart & Lung Institute, Imperial College School of Medicine, Royal Brompton Campus, London, United Kingdom; and Department of Anatomy and Embryology (W.H.L.), Academic Medical Center, Amsterdam, the Netherlands.

Abstract

Abstract —It used to be thought that the atrioventricular septum was predominantly the product of the atrioventricular endocardial cushions. In a previous study, we have shown that multiple developmental primordia are of importance in its formation. With this in mind, we have evaluated cardiac morphogenesis in the mouse with trisomy 16, an animal model with a high incidence of atrioventricular septal defects. Normal and trisomic fetuses from an Rb(11.16)2H/Rb(16.17)7Bnr×C57BL/6J cross were collected on days 10 to 15 of gestation and examined by scanning electron microscopy and histological serial sectioning. No evidence was found to suggest that atrioventricular septal defect could be explained simply on the basis of “failure of fusion” between the atrioventricular endocardial cushions. Rather, our findings supported two other developmental elements as being important in the genesis of atrioventricular septal defect. The first is an alteration in the configuration of the heart tube, with inadequate remodeling of the inner heart curvature. This resulted in the failure of the atrioventricular junction to expand to the right, with subsequent malalignment of the atrioventricular endocardial cushions with the proximal outflow cushions. The second is a variability in the connection of the primary atrial cardiac segment to the body of the embryo, the so-called dorsal mesocardium, which influences its relationship to the extracardiac mediastinal mesoderm. There appeared little difference in the connection between normal and trisomic embryos at the stage of 20 to 25 somites, but the area subsequently showed marked changes. In most trisomic embryos, the connection with the mediastinal mesoderm of the body was over a larger area than seen in normal embryos. As this area of attachment encloses the pulmonary pit, the entry point of the pulmonary vein, this gives potential for variation in the connection of the pulmonary vein. In addition, in the majority of trisomic embryos, the right pulmonary ridge (the spina vestibuli) did not accumulate extracardiac mesoderm, nor did it undergo the pronounced forward growth seen in normal embryos of equivalent stages. Consequently, the trisomic embryos show incomplete formation of both the atrial and the atrioventricular septal structures.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Atrioventricular Septal Defects;Pediatric Cardiology;2024

2. Molecular Pathways and Animal Models of Atrioventricular Septal Defect;Advances in Experimental Medicine and Biology;2024

3. Atrioventricular Septal Defects;Pediatric Cardiology;2023

4. Predisposition to atrioventricular septal defects may be caused by SOX7 variants that impair interaction with GATA4;Molecular Genetics and Genomics;2022-03-09

5. Development of the human heart;American Journal of Medical Genetics Part C: Seminars in Medical Genetics;2020-02-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3