c-Jun Triggers Apoptosis in Human Vascular Endothelial Cells

Author:

Wang Nanping1,Verna Lynne1,Hardy Stephen1,Zhu Yi1,Ma Kuo-Sheng1,Birrer Michael J.1,Stemerman Michael B.1

Affiliation:

1. From the Division of Biomedical Sciences (N.W., L.V., Y.Z., K.-S.M., M.B.S.), University of California, Riverside, Calif; Chiron Corporation (S.H.), Emeryville, Calif; and Medicine Branch (M.J.B.), National Cancer Institute, National Institutes of Health, Rockville, Md.

Abstract

Abstract —In endothelial cells (ECs), the transcription factor c-Jun is induced by a variety of stimuli that perturb EC function. To extend our understanding of the role of c-Jun in EC physiology, we have directed overexpression of c-Jun in human umbilical vein ECs by using a tetracycline-regulated adenoviral expression system. In this study, we report a novel observation using this system. Specific expression of c-Jun is a sufficient trigger for ECs to undergo apoptosis, as demonstrated by a set of combined assays including an ELISA specific for histone-associated DNA fragmentation, DNA laddering, and TdT-mediated dUTP nick end labeling (TUNEL). Tetracycline can effectively shut off c-Jun overexpression and prevent EC apoptosis. Cleavage of poly(ADP-ribose) polymerase was also detected in ECs overexpressing c-Jun. Moreover, inhibitors of cysteine proteases blocked the apoptosis, suggesting a caspase-associated mechanism involved in proapoptotic effects of c-Jun. To gain further insight into the role of c-Jun as a pathophysiological regulator of EC death, TAM67, a dominant-negative mutant of c-Jun, was overexpressed in human umbilical vein ECs to abrogate endogenous c-Jun/activator protein-1 activation. H 2 O 2 -triggered apoptosis was largely attenuated in ECs overexpressing TAM67. Together, these results suggest that c-Jun, as a proapoptotic molecule, may play a role in mediating the cell death program in vascular endothelium.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3