Extracellular Adenosine Induces Apoptosis of Human Arterial Smooth Muscle Cells via A 2b -Purinoceptor

Author:

Peyot Marie-Line1,Gadeau Alain-Pierre1,Dandré Frédéric1,Belloc Isabelle1,Dupuch Françoise1,Desgranges Claude1

Affiliation:

1. From the Unité INSERM 441, Pessac, France.

Abstract

Abstract —Apoptosis of arterial smooth muscle cells (ASMCs) could play an important role in the pathogenesis of atherosclerosis and restenosis. Recent studies have demonstrated that extracellular adenosine induces apoptosis in various cell types. Our aim was to delineate the capacity of this nucleoside to induce ASMC apoptosis in arterial diseases. We demonstrate that adenosine dose-dependently triggers apoptosis of cultured human ASMCs. Apoptotic cell death was quantified by analysis of nuclear chromatin morphology and characterized by DNA laddering. The involvement of adenosine receptors was suggested, because neither an adenosine deaminase inhibitor, erythro-9-(2-hydroxy-3-nonyl) adenine hydrochloride, nor an inhibitor of cellular nucleoside transport, dipyridamole, was able to inhibit adenosine-induced ASMC apoptosis. In contrast, an A 1 /A 2 -adenosine receptor antagonist, xanthine amine congener, totally inhibited adenosine-induced apoptosis. Furthermore, among more selective inhibitors of P 1 purinoceptor subtypes, only alloxazine, an antagonist of A 1 - and A 2 -adenosine receptors, completely inhibited adenosine-induced ASMC apoptosis, suggesting that adenosine triggers ASMC apoptosis via either 1 or both of these receptors. However, 8-cyclopentyl-1,3-dipropylxanthine, 8-(3-chlorostyryl) caffeine, and 3-ethyl-5-benzyl-2-methyl-4-phenylethynyl-6-phenyl-1,4-(±)-dihydropyridine-3,5-dicarboxylate, which are A 1 -, A 2a -, and A 3 -adenosine receptor antagonists, did not inhibit adenosine-induced apoptosis, suggesting an involvement of the A 2b -receptor in this process. Moreover, the cAMP increase followed by cAMP-dependent protein kinase activation appears essential to mediate adenosine-induced ASMC apoptosis, thus confirming the previous hypothesis. These results indicate that adenosine-induced apoptosis of ASMCs is essentially mediated via A 2b -adenosine receptor and involves a cAMP-dependent pathway.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3