Evidence From a Novel Human Cell Clone That Adult Vascular Smooth Muscle Cells Can Convert Reversibly Between Noncontractile and Contractile Phenotypes

Author:

Li Shaohua1,Sims Stephen1,Jiao Yang1,Chow Lawrence H.1,Pickering J. Geoffrey1

Affiliation:

1. From the Vascular Biology Group (S.L., L.H.C., J.G.P.), John P. Robarts Research Institute; Department of Medicine (Cardiology) (L.H.C., J.G.P.), London Health Sciences Centre; and Departments of Biochemistry (J.G.P.), Medical Biophysics (J.G.P.), and Physiology (S.S., Y.J.), University of Western Ontario, London, Ontario, Canada.

Abstract

Abstract —Smooth muscle cells (SMCs) perform diverse functions that can be categorized as contractile and synthetic. A traditional model holds that these distinct functions are performed by the same cell, by virtue of its capacity for bidirectional modulation of phenotype. However, this model has been challenged, in part because there is no physiological evidence that an adult synthetic SMC can acquire the ability to contract. We sought evidence for this by cloning adult SMCs from human internal thoracic artery. One clone, HITB5, expressed smooth muscle α-actin, smooth myosin heavy chains, heavy caldesmon, and calponin and showed robust calcium transients in response to histamine and angiotensin II, which confirmed intact transmembrane signaling cascades. On serum withdrawal, these cells adopted an elongated and spindle-shaped morphology, random migration slowed, extracellular matrix protein production fell, and cell proliferation and [ 3 H]thymidine incorporation fell to near 0. Cell viability was not compromised, however; in fact, apoptosis rate fell significantly. In this state, agonist-induced elevation of cytoplasmic calcium was even more pronounced and was accompanied by SMC contraction. Readdition of 10% serum completely returned HITB5 cells to a noncontractile, proliferative phenotype. Contractile protein expression increased after serum withdrawal, although modestly, which suggested that the switch to contractile function involved reorganization or sensitization of existing contractile structures. To our knowledge, the physiological properties of HITB5 SMCs provide the first direct demonstration that cultured human adult SMCs can convert between a synthetic, noncontracting state and a contracting state. HITB5 cells should be valuable for characterizing the basis of this critical transition.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3