Optimized Delivery System Achieves Enhanced Endomyocardial Stem Cell Retention

Author:

Behfar Atta1,Latere Jean-Pierre1,Bartunek Jozef1,Homsy Christian1,Daro Dorothee1,Crespo-Diaz Ruben J.1,Stalboerger Paul G.1,Steenwinckel Valerie1,Seron Aymeric1,Redfield Margaret M.1,Terzic Andre1

Affiliation:

1. From Division of Cardiovascular Diseases and Center for Regenerative Medicine, Mayo Clinic, Rochester, MN (A.B., R.J.C.-D., P.G.S., M.M.R., A.T.); Cardio3 BioSciences, Mont-Saint-Guibert, Belgium (J.-P.L., C.H., D.D., V.S., A.S.); and Cardiovascular Center, OLV Ziekenhuis, Aalst, Belgium (J.B.).

Abstract

Background— Regenerative cell-based therapies are associated with limited myocardial retention of delivered stem cells. The objective of this study is to develop an endocardial delivery system for enhanced cell retention. Methods and Results— Stem cell retention was simulated in silico using 1- and 3-dimensional models of tissue distortion and compliance associated with delivery. Needle designs, predicted to be optimal, were accordingly engineered using nitinol, a nickel and titanium alloy displaying shape memory and superelasticity. Biocompatibility was tested with human mesenchymal stem cells. Experimental validation was performed with species-matched cells directly delivered into Langendorff-perfused porcine hearts or administered percutaneously into the endocardium of infarcted pigs. Cell retention was quantified by flow cytometry and real-time quantitative polymerase chain reaction methodology. Models, computing optimal distribution of distortion calibrated to favor tissue compliance, predicted that a 75°-curved needle featuring small-to-large graded side holes would ensure the highest cell retention profile. In isolated hearts, the nitinol curved needle catheter (C-Cath) design ensured 3-fold superior stem cell retention compared with a standard needle. In the setting of chronic infarction, percutaneous delivery of stem cells with C-Cath yielded a 37.7±7.1% versus 10.0±2.8% retention achieved with a traditional needle without effect on biocompatibility or safety. Conclusions— Modeling-guided development of a nitinol-based curved needle delivery system with incremental side holes achieved enhanced myocardial stem cell retention.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3