Renal Microvascular Disease Determines the Responses to Revascularization in Experimental Renovascular Disease

Author:

Chade Alejandro R.1,Kelsen Silvia1

Affiliation:

1. From the Department of Physiology and Biophysics (Dr Chade), Center for Excellence in Cardiovascular-Renal Research, and the Department of Medicine (Dr Chade and Ms Kelsen), University of Mississippi Medical Center, Jackson, Miss.

Abstract

Background— Percutaneous transluminal renal angioplasty (PTRA) is the most frequent therapeutic approach to resolving renal artery stenosis (RAS). However, renal function recovers in only 30% of the cases. The causes of these poor outcomes are still unknown. We hypothesized that preserving the renal microcirculation distal to RAS will improve the responses to PTRA. Methods and Results— RAS was induced in 28 pigs. In 14, vascular endothelial growth factor (VEGF)-165 0.05 μg/kg was infused intrarenally (RAS+VEGF). Single-kidney function was assessed in all pigs in vivo using ultrafast CT after 6 weeks. Observation of half of the RAS and RAS+VEGF pigs was completed. The other half underwent PTRA and repeated VEGF, and CT studies were repeated 4 weeks later. Pigs were then euthanized, the stenotic kidney removed, renal microvascular (MV) architecture reconstructed ex vivo using 3D micro-CT, and renal fibrosis quantified. The degree of RAS and hypertension were similar in RAS and RAS+VEGF. Renal function and MV density were decreased in RAS but improved in RAS+VEGF. PTRA largely resolved RAS, but the improvements of hypertension and renal function were greater in RAS+VEGF+PTRA than in RAS+PTRA, accompanied by a 34% increase in MV density and decreased fibrosis. Conclusions— Preservation of the MV architecture and function in the stenotic kidney improved the responses to PTRA, indicating that renal MV integrity plays a role in determining the responses to PTRA. This study indicates that damage and early loss of renal MV is an important determinant of the progression of renal injury in RAS and instigates often irreversible damage.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3