A mathematical analysis of the myogenic hypothesis with special reference to autoregulation of renal blood flow.

Author:

Oien A H,Aukland K

Abstract

To test the hypothesis that autoregulation of renal blood flow could result from myogenic regulation of arterial/arteriolar wall tension, we have explored a model based on the assumptions that (1) each preglomerular vessel segment reacts to a change in transmural pressure by altering its internal radius until the initial change in wall tension is reduced by a gain factor, (2) postglomerular structural resistance remains unchanged, (3) extravascular tissue pressure equals intrarenal venous pressure, and (4) the renal vascular system can be represented by one unbranched tube. General equations were obtained for flow and segmental radii and pressure as functions of aortic pressure. With a gain factor of 1 and a glomerular capillary pressure of 50% of aortic pressure under control conditions, the model predictions agree well with experimental data in dogs. Increasing aortic pressure from about 60% of control level causes only slight increase of blood flow. A rise in tissue pressure up to 40% of aortic pressure causes only moderate reduction. Changes in vessel radii begin in proximal vessel segments and spread distally toward glomerulus at increasing changes in aortic and tissue pressures from their control levels. Glomerular capillary pressure is autoregulated in proportion to blood flow. The degree of autoregulation is only moderately dependent on the gain factor: A moderate impairment caused by reducing the gain factor from 1 to 0.7 may be compensated by locating the myogenically responsive wall layer a distance 0.2 times the internal radius from the vessel lumen. "Superautoregulation," i.e., a rise in flow at reduced aortic pressure, is not possible. An upper limit of autoregulation is obtained only with the additional assumption of a fall in contractile force at extreme shortening of the muscle fibers. No definitive biological proof has yet been provided for a segmental wall tension-regulating mechanism in the preglomerular vessels, and obviously its existence cannot be proved by a mathematical model. However, if such a mechanism does exist, it can explain most of the renal resistance changes at varying arterial and intrarenal pressures, as well as the observed autoregulation of terminal interlobular arterial pressure.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Reference38 articles.

1. Aukland K (1967) Study of renal circulation with inert gas: Measurements in tissue. In Proceedings of the Third International Congress of Nephrology vol 1. Washington D.C. Basel Karger pp 188-200

2. Aukland K (1976) Renal blood flow. 7n International Reviews of Physiology Kidney and Urinary Tract Physiology II vol 11 edited by K Thurau. Baltimore University Park Press pp 23-79

3. On the local reactions of the arterial wall to changes of internal pressure

4. Effect of hemorrhage on blood flow through renal cortex of the dog.

5. Autoregulation of blood flow. Effects of indomethacin and ureteral pressure;Blackshear JL;Mineral Electrolyte Metab,1979

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3