The role of high-energy phosphate in norepinephrine-induced acute renal failure in the dog.

Author:

Sinsteden T D,O'Neil T J,Hill S,Lifschitz M D,Stein J H

Abstract

Previous studies have demonstrated that pretreatment with mannitol, furosemide, or bradykinin can attenuate the severity of norepinephrine-induced renal functional impairment. The present studies were designed to evaluate the possibility that these agents are protective, in part, by preserving cellular metabolic integrity. The renal cortex was repetitively biopsied during the course of this study, and high-pressure liquid chromatography was used to analyze the tissue content of adenine nucleotides (expressed in nanomoles per gram of wet tissue). The adenine nucleotide charge ratio (CR) and total adenine nucleotide (TAN) content were calculated as indices of cellular metabolic integrity. In addition to the above-established protective agents, phenoxybenzamine was used to evaluate a direct toxic effect of norepinephrine on renal tissue. Inulin clearance at 3 hours post infusion (expressed as a percent of control) was 7% with norepinephrine alone and, in the protected groups, 36% with bradykinin, 61% with furosemide, 51% with mannitol, and 100% with phenoxybenzamine. There was no change in CR or TAN with phenoxybenzamine. In contrast, during norepinephrine administration CR fell significantly in all other groups. Three hours after stopping norepinephrine, CR had returned toward control values and the level of CR was significantly better in all protected groups when compared with norepinephrine alone. Similarly, the levels of TAN were significantly diminished in the norepinephrine-alone group when compared to all protected groups, and there was significantly more tubular necrosis as well. The maintenance of higher levels of TAN and the preserved ability to regenerate adenosine triphosphate in the protected groups, when compared to the norepinephrine-alone group, support the contention that these agents offer protection, at least in part, by preserving cellular metabolic integrity.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3