Author:
Broughton A,Grant A O,Starmer C F,Klinger J K,Stambler B S,Strauss H C
Abstract
Current theories envision recovery from local anesthetic block of sodium channels via slow hydrophilic and fast hydrophobic paths. Extracellular pH reduction which increases cationic/neutral anesthetic form should especially prolong recovery kinetics of highly lipid soluble compounds that could readily exit via the hydrophobic pathway at normal extracellular pH. To test this hypothesis, we compared the effects of three related compounds with similar pKa on the time course of Vmax reactivation in guinea pig papillary muscle at pHo 7.4 and 6.95. The compounds were lidocaine and its two desethylation products, monoethylglycinexylidide and glycinexylidide. Judged from the octanol:water partition coefficient, lidocaine was the most lipid soluble (log partition coefficient 2.39 +/- 0.10), followed by monoethylglycinexylidide (log partition coefficient 1.32 +/- 0.09) and glycinexylidide was the least lipid soluble (log partition coefficient 0.41 +/- 0.09). At 30 microM and pHo 7.4, the potency order for Vmax depression at zero diastolic interval was lidocaine (53 +/- 6%), monoethylglycinexylidide (17 +/- 3%), and then glycinexylidide (7.8 +/- 1.9%). The decay of Vmax block appeared monoexponential, and the time constant of recovery was dose independent. Most important is the fact that there were significant differences in the tau r increase with extracellular pH reduction (P less than 0.05; Scheffé contrasts). The increase was greatest with lidocaine [73 +/- 28% (mean +/- SD)], less with monoethylglycinexylidide (42 +/- 15%), and least with glycinexylidide (13 +/- 17%). The simplest interpretation of the differences in extracellular pH-dependence of recovery kinetics was that recovery from block due to the neutral form of these ionizable local anesthetics depended on lipid solubility, whereas recovery from block due to the protonated form depended on molecular weight.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Cardiology and Cardiovascular Medicine,Physiology
Reference42 articles.
1. Bean BP Cohen CJ Tsien RW (1982) Block of cardiac sodium channels by tetrodotoxin and lidocaine: Sodium current and Vm.* experiments. In Normal and Abnormal Conduction in the Heart edited by A Paes de Carvalho BF Hoffman M Lieberman. Mount Kisco Futura pp 189-209
2. Lidocaine block of cardiac sodium channels.
3. Bell RP (1973) The Proton in Chemistry ed 2. Ithaca Cornell University Press
4. The convulsant potency of lidocaine and its A/-dealkylated metabolites;Blumer J;J Pharmacol Exp Ther,1973
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献