Left ventricular energetics. Heat loss and temperature distribution of canine myocardium.

Author:

ten Velden G H,Elzinga G,Westerhof N

Abstract

The sum of total left ventricular heat loss and left ventricular mean total external power was compared with the product of oxygen consumption and its energy equivalent. Myocardial blood flow, measured with 15 +/- 3 micrometers radioactive microspheres, was multiplied by the transcoronary arteriovenous temperature difference and by oxygen content difference to obtain coronary heat loss and oxygen consumption, respectively. Since only part of the heat is carried away by the coronary system a thermodilution technique was used to obtain the ratio between the heat removed by the coronary system and the external heat loss. A correction was made for the endothermic reactions of hemoglobin deoxygenation and carbon dioxide reactions with blood. Left ventricular oxygen consumption corresponded to 2.26 +/- 0.66 W/100 g, and for the sum of total left, ventricular heat loss and external power, 2.09 +/- 0.51 W/100 g was found (n = 14). In a second series, the measured transmyocardial temperature distribution was compared with the calculated temperature distribution, assuming that heat production in the myocardium is uniform and that heat is lost by coronary flow and diffusion. When thoracic and luminal myocardial surface temperatures were about equal, blood flow was found to be about the same in the various layers of the heart, whereas myocardial temperature was found to be highest near the middle of the wall (0.36 +/ 0.07 degrees C warmer than luminal temperature (n = 6). When thoracic surface temperature was increased or decreased (by + 1.56 +/- 0.99 degrees and -1.10 +/- 0.59 degrees C, respectively), consistent changes were seen for the temperature distribution in the myocardium, but not for the local flow (endo/epi ratio: 1.06 +/- 0.29 and 0.96 +/- 0.21, respectively). These data suggest that myocardial blood flow is independent of tissue temperature.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. How does exercise affect energy metabolism? An in silico approach for cardiac muscle;Heliyon;2023-06

2. Basic principles that determine relationships between pulsatile hemodynamic phenomena and function of elastic vessels;Textbook of Arterial Stiffness and Pulsatile Hemodynamics in Health and Disease;2022

3. Two-Level Organization of Thermogenesis in Adipose Tissue: a Morphofunctional Hypothesis;Journal of Evolutionary Biochemistry and Physiology;2019-09

4. Coronary Hemodynamics;Snapshots of Hemodynamics;2018-09-15

5. Cardiac Power and Ventriculo-Arterial Coupling;Snapshots of Hemodynamics;2018-09-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3