Prevention of transcoronary macromolecular leakage after ischemia-reperfusion by the calcium entry blocker nisoldipine. Direct observations in isolated rat hearts.

Author:

McDonagh P F,Roberts D J

Abstract

Coronary microvascular damage appears to play a role in reperfusion injury after myocardial ischemia. This study was designed to afford direct viewing of the effects of myocardial ischemia-reperfusion on the coronary microcirculation and to determine whether pretreatment with the calcium blocker nisoldipine would attenuate any microvascular damage during reperfusion. Four groups of isolated rat hearts were perfused with a solution that contained red cells and fluorescent albumin, but was essentially free of platelets and leukocytes. Group I served as a nonischemic control. Group II hearts were subjected to 30 minutes of no-flow ischemia followed by reperfusion. Group III hearts were pretreated with nisoldipine (1 microgram/min) for 5 minutes before ischemia, and group IV hearts were treated with nitroglycerin (93 micrograms/min) before and after ischemia to mimic the vasodilation caused by nisoldipine. Perfused coronary capillarity and transcoronary extravasation of plasma albumin were measured by direct visualization techniques before and after ischemia. For group I, there was no significant change in coronary resistance, perfused capillarity, or transcoronary extravasation with time. For both groups II and IV, ischemia-reperfusion caused no increase in coronary resistance, but a significant decrease in perfused capillarity and a marked increase in transcoronary extravasation of fluorescent albumin (P less than 0.05). The nisoldipine group (group III) demonstrated a similar decrease in perfused capillarity but no increase in protein extravasation during reperfusion. These results indicate that, in the heart, platelets and/or leukocytes are not absolutely necessary to induce either the no-reflow phenomenon or the permeability damage observed during reperfusion after ischemia. The protective effect of treatment with nisoldipine appeared to be independent of vasodilation. We speculate that this calcium blocker reduced endothelial uptake of calcium during reperfusion, preventing endothelial deformation and formation of interendothelial gaps.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Reference49 articles.

1. Ischaemic contracture and myocardial perfusion in isolated rat heart

2. Antonacrio MJ (1984) Cardiovascular Pharmacology. New York Raven Press

3. Changes in the microvascularure of ischemic and infarcted myocardium;Armiger LC;Lab Invest,1975

4. An improved isolated heart preparation for external assessment of myocardial metabolism;Bergmann SR;Am J Physiol,1979

5. Protection of ischemic rabbit myocardium by glutamic add. Am;Birtl JA;Physiol,1983

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3